-
About the Course 0
No items in this section -
Machine Learning [Module 1]:- Introduction to Machine Learning 5
-
Introduction to Machine Learning 13 minLecture2.1
-
Key point in Machine Learning ( Basics of ML ) 10 minLecture2.2
-
Steps in Machine learning 05 minLecture2.3
-
Issue in Machine Learning 07 minLecture2.4
-
Overfitting and Underfitting Bias and Variance 20 minLecture2.5
-
-
Machine Learning [Module 2]:- Learning with Regression and Trees 8
-
Linear Regression 09 minLecture3.1
-
Logistic Regression part 1 09 minLecture3.2
-
Logistic Regression part 2 14 minLecture3.3
-
Decision Tree Sum using ID3 24 minLecture3.4
-
Decision Tree Sum using CART 22 minLecture3.5
-
Decision Tree Gini Index – Dec 2023 21 minLecture3.6
-
Decision Tree Gini Index – May 2024 12 minLecture3.7
-
Linear Regression Numerical Soln 10 minLecture3.8
-
-
Machine Learning [Module 3]:- Ensemble Learning 7
-
Ensemble learning 04 minLecture4.1
-
Boosting 04 minLecture4.2
-
Bagging 03 minLecture4.3
-
Stacking 02 minLecture4.4
-
Hard voting and Soft voting 03 minLecture4.5
-
Random Forest Algorithm 06 minLecture4.6
-
Cross Validation and K Fold 11 minLecture4.7
-
-
Machine Learning [Module 4]:- Learning with Classification 3
-
Support Vector Machine 10 minLecture5.1
-
Multiclass Classifications 08 minLecture5.2
-
Performance Evaluation metrics 26 minLecture5.3
-
-
Machine Learning [Module 5]:- Learning with clustering 7
-
K mean Clustering Algorithm 12 minLecture6.1
-
Apriori Algorithm with solved Example 12 minLecture6.2
-
Agglomerative Algorithm with solved Example Part #1 13 minLecture6.3
-
Agglomerative Algorithm with solved Example Part #2 05 minLecture6.4
-
DBSCAN – Density Based Clustering 08 minLecture6.5
-
Expectation Maximization Algorithm 06 minLecture6.6
-
Clustering with Minimal Spanning Tree 12 minLecture6.7
-
-
Machine Learning [Module 6]:- Dimensionality Reduction 6
-
Dimensionality Reduction 08 minLecture7.1
-
PCA (Principal component Analysis ) Concept 14 minLecture7.2
-
PCA (Principal Component Analysis) Sum 19 minLecture7.3
-
LDA Numericals 28 minLecture7.4
-
Matrix Diagonalization 26 minLecture7.5
-
Numericals on SVD 25 minLecture7.6
-
-
Machine Learning [Module wise Imp Solution] 6
-
Introduction to Machine LearningLecture8.1
-
Learning with Regression and TreesLecture8.2
-
Ensemble LearningLecture8.3
-
Learning with ClassificationLecture8.4
-
Learning with clusteringLecture8.5
-
Dimensionality ReductionLecture8.6
-
-
Big Data Analytics [Module 1]:- Introduction to Big Data and Hadoop 3
-
Introduction to Big Data Analytics 07 minLecture9.1
-
Introduction to Hadoop Part #1 10 minLecture9.2
-
Introduction to Hadoop Part #2 10 minLecture9.3
-
-
Big Data Analytics [Module 2]:- Hadoop HDFS and Map Reduce 2
-
Introduction to MapReduce 11 minLecture10.1
-
Matrix Multiplication 16 minLecture10.2
-
-
Big Data Analytics [Module 3]:- NoSql 5
-
Introduction to No SQL Database 08 minLecture11.1
-
Key-Value Stores 07 minLecture11.2
-
Column Store Database 06 minLecture11.3
-
Document Database 05 minLecture11.4
-
Graph Database 07 minLecture11.5
-
-
Big Data Analytics [Module 4]:- Mining Data Streams 7
-
Data Stream Management System 08 minLecture12.1
-
Sampling Techniques – Part 1 07 minLecture12.2
-
Sampling Techniques – Part 2 07 minLecture12.3
-
Bloom Filtering 18 minLecture12.4
-
Bloom Filter Numerical in BDA 23 minLecture12.5
-
Flajolet Martin Algorithm 14 minLecture12.6
-
DGIM algorithm (Datar-Gionis-Indyk-Motwani Algorithm) 09 minLecture12.7
-
-
Big Data Analytics [Module 5]:- Real Time Big Data Model 8
-
Dead Ends 04 minLecture13.1
-
Clique and Community 14 minLecture13.2
-
Clique and Community Numerical 20 minLecture13.3
-
Content Based Recommendation System 18 minLecture13.4
-
Collaborative Filtering 20 minLecture13.5
-
Authority and hub 21 minLecture13.6
-
Determine the Communities Girvan Newman Sum VIMP 23 minLecture13.7
-
Determine Communities Girvan Newman Numerical 2 VVIMP 17 minLecture13.8
-
-
Big Data Analytics [Module 6]:- Data Analytics with R 13
-
Introduction – R Programming – #1 12 minLecture14.1
-
Introduction – R Programming – #2 16 minLecture14.2
-
Vectors in R Programming 17 minLecture14.3
-
Objects in R Programming 18 minLecture14.4
-
Interacting With Users 12 minLecture14.5
-
Script in R 13 minLecture14.6
-
Plot in R 17 minLecture14.7
-
Exploring Dataset in R 25 minLecture14.8
-
Function in R 12 minLecture14.9
-
Visualization in R 16 minLecture14.10
-
Module 6 Numerical IMP Solution 27 minLecture14.11
-
R Programing Numerical Dec 2023 34 minLecture14.12
-
R Programming Numerical PYQ Part 2 27 minLecture14.13
-
-
Big Data Analytics [Module wise Notes] 6
-
Module 1 – Introduction to Big Data and HadoopLecture15.1
-
Module 2 – Hadoop HDFS and Map ReduceLecture15.2
-
Module 3 – NoSqlLecture15.3
-
Module 4 – Mining Data StreamsLecture15.4
-
Module 5 – Real Time Big Data ModelLecture15.5
-
Module 6 – Data Analytics with RLecture15.6
-
-
Big Data Analytics [Module wise IMP Solution] 7
-
Module 1 – Big Data analytics ImportanceLecture16.1
-
Module 2 – Hadoop HDFS and MapReduceLecture16.2
-
Module 3 – NO SQLLecture16.3
-
Module 4 – Mining Data StreamLecture16.4
-
Module 5 – Real Time Big Data ModelsLecture16.5
-
Module 6 – R ProgrammingLecture16.6
-
Big Data IMP Solution 2024Lecture16.7
-
-
Natural Language Processing [Module 1]:- Introduction to NLP 5
-
Introduction to NLP [Natural Language Processing] 12 minLecture17.1
-
Knowledge Required in NLP 11 minLecture17.2
-
Ambiguity in NLP 07 minLecture17.3
-
NLP Phases 08 minLecture17.4
-
Introduction to NLP[Notes]Lecture17.5
-
-
Natural Language Processing [Module 2]:- Word Level Analysis 9
-
Regular Expression 09 minLecture18.1
-
FSA 09 minLecture18.2
-
Language Model 10 minLecture18.3
-
Morphology Analysis 11 minLecture18.4
-
N-gram Model 04 minLecture18.5
-
Morphology Parsing 09 minLecture18.6
-
Word Level Analysis [Notes]Lecture18.7
-
Design FSA for Word of English 1 – 99 05 minLecture18.8
-
NLP Bigram Numericals PYQ 29 minLecture18.9
-
-
Natural Language Processing [Module 3]:- Syntax analysis 16
-
POS Tagging 10 minLecture19.1
-
Syntax Analysis 03 minLecture19.2
-
Tag-set for English 12 minLecture19.3
-
Rule Based POS 06 minLecture19.4
-
Stochastic Part of Speech Tagging 08 minLecture19.5
-
Transformation Based Tagging 06 minLecture19.6
-
Multiple Tags ,Word and Unknown Words 04 minLecture19.7
-
Basic Concept of Grammar and Parse Tree 09 minLecture19.8
-
Parsing in NLP 06 minLecture19.9
-
Hidden Markov Model Part 1 10 minLecture19.10
-
Hidden Markov Model Part 2 07 minLecture19.11
-
Viterbi Algorithm 08 minLecture19.12
-
HMM Numerical-01 PYQ 36 minLecture19.13
-
HMM Numerical 2 – PYQ 29 minLecture19.14
-
Conditional Random Field CRF 20 minLecture19.15
-
Syntax Analysis [Notes]Lecture19.16
-
-
Natural Language Processing [Module 4]:- Semantic Analysis 9
-
Introduction to Semantic Analysis 13 minLecture20.1
-
Element of Semantic Analysis 06 minLecture20.2
-
Attachment for Fragment of English (Phrases #1) 09 minLecture20.3
-
Attachment for Fragment of English (Phrases #2) 05 minLecture20.4
-
Attachment for Fragment of English (Phrases #3) 04 minLecture20.5
-
WordNet 08 minLecture20.6
-
Word Sense Disambiguation (WSD) 09 minLecture20.7
-
Yarowsky Approach and HyperLex Approach 15 minLecture20.8
-
Semantic Analysis [Notes]Lecture20.9
-
-
Natural Language Processing [Module 5]:- Pragmatic & Discourse Processing 5
-
Pragmatics 13 minLecture21.1
-
Discourse Processing 16 minLecture21.2
-
Pragmatics [Notes]Lecture21.3
-
CYK Numerical 11 minLecture21.4
-
Anaphora Resolution Using Hobbs’ Algo 13 minLecture21.5
-
-
Natural Language Processing [Module 6]:- Application of NLP 4
-
Machine Translation Introduction 14 minLecture22.1
-
Machine Translation Types 23 minLecture22.2
-
Question Answering System 20 minLecture22.3
-
Information Retrieval & the different steps in text processing for Information Retrieval 25 minLecture22.4
-
-
Natural Language Processing [Module wise Imp Solution] 6
-
Module 1 Introduction to NLPLecture23.1
-
Module 2 WORD LEVEL ANALYSISLecture23.2
-
Module 3 SYNTAX ANALYSISLecture23.3
-
Module 4 SEMANTIC ANALYSISLecture23.4
-
Module 5 Pragmatic & Discourse ProcessingLecture23.5
-
Module 6 Applications of NLPLecture23.6
-
-
Natural Language Processing [Viva Questions] 1
-
Viva QuestionsLecture24.1
-
This content is protected, please login and enroll course to view this content!
Next
Viterbi Algorithm

