-
Course Overview 0
No items in this section -
[SEPM] - Importance Solutions Notes - Modulewise 6
-
[ SEPM ] [Module 1]:- Introduction To Software Engineering and Process Models 10
-
Introduction to Software Engineering 10 minLecture3.1
-
Process Framework Model 07 minLecture3.2
-
Capability Maturity Model (CMM) 09 minLecture3.3
-
Waterfall Model in Soft Development Life cycle 07 minLecture3.4
-
Agile Development Process 10 minLecture3.5
-
Schedule Slippage and Cost Slippage 03 minLecture3.6
-
Extreme Programming (XP) in SDLC 13 minLecture3.7
-
SCRUM 09 minLecture3.8
-
Iterative Model in SDLC 06 minLecture3.9
-
Verification and Validation 03 minLecture3.10
-
-
[ SEPM ] [Module 2]:- Requirements Analysis and Cost Estimation 5
-
SRS 15 minLecture4.1
-
SRS Example 18 minLecture4.2
-
SRS Characteristics 07 minLecture4.3
-
Cocomo Model (Constructive Cost Model Introduction) 07 minLecture4.4
-
Process and Project Matrices SP Estimation 06 minLecture4.5
-
-
[ SEPM ] [Module 3]:- Software Risk and Configuration Management 8
-
Risk Identification 05 minLecture5.1
-
RMMM ( Rish Mitigation Monitoring Management ) 03 minLecture5.2
-
Change Control 04 minLecture5.3
-
Version Control 03 minLecture5.4
-
Formal Technical Review (FTR) 08 minLecture5.5
-
Maintenance in Software Engineering 04 minLecture5.6
-
Service-Oriented Architecture 06 minLecture5.7
-
Software Configuration Management 09 minLecture5.8
-
-
[ SEPM ] [Module 4]:- Software Testing and Maintenance 6
-
Integration Testing 04 minLecture6.1
-
Object-Oriented 05 minLecture6.2
-
White Box Testing 16 minLecture6.3
-
Black Box Testing 12 minLecture6.4
-
Reverse Engineering 04 minLecture6.5
-
Alpha and Beta testing 03 minLecture6.6
-
-
[ SEPM ] IT Project Management and Project Scheduling 4
-
Introduction To Project Management 10 minLecture7.1
-
W5HH PRINCIPLE 12 minLecture7.2
-
PMBOK 12 minLecture7.3
-
Risk Categorization 13 minLecture7.4
-
-
[ SEPM ] Software Engineering Importance (OLD) 7
-
Introduction To SE and Process ModelsLecture8.1
-
Software Req Analysis and ModelingLecture8.2
-
Software Estimation MetricsLecture8.3
-
Software DesignLecture8.4
-
Software TestingLecture8.5
-
SCM, QA and MaintenanceLecture8.6
-
[Extra] Previously Asked Important QuestionsLecture8.7
-
-
[ SEPM ] Software Engineering Viva Question 6
-
Introduction to Software Engineering and Process ModelsLecture9.1
-
Software Requirements Analysis and ModelingLecture9.2
-
Software Estimation MetricsLecture9.3
-
Software DesignLecture9.4
-
Software TestingLecture9.5
-
Software Configuration Management, Quality Assurance and MaintenanceLecture9.6
-
-
[ SEPM ] Software Engineering Notes 2
-
Software Engineering Sample NotesLecture10.1
-
Software Engineering Full NotesLecture10.2
-
-
[ ML ] [Module 1]:- Introduction to Machine Learning 5
-
Introduction to Machine Learning 13 minLecture11.1
-
Key point in Machine Learning 10 minLecture11.2
-
Steps in Machine learning 05 minLecture11.3
-
Issue in Machine Learning 07 minLecture11.4
-
Module 1 NotesLecture11.5
-
-
[ ML ] [Module 2]:- Mathematical Foundation for ML 2
-
Matrix Diagonalization 26 minLecture12.1
-
Numericals on SVD 25 minLecture12.2
-
-
[ ML ] [Module 3]:- Linear Models 4
-
Linear Regression 09 minLecture13.1
-
Support Vector Machine 10 minLecture13.2
-
Linear Regression Numerical ML 09 minLecture13.3
-
Least Square Regression Numerical ML 09 minLecture13.4
-
-
[ ML ] [Module 4]:- Clustering 2
-
Hebbian Learning 12 minLecture14.1
-
Expectation Maximization Algorithm 06 minLecture14.2
-
-
[ ML ] [Module 5]:- CLassification 9
-
Neural Network 18 minLecture15.1
-
Artificial Neural Network 16 minLecture15.2
-
Logistic Regression #1 09 minLecture15.3
-
Logistic Regression #2 14 minLecture15.4
-
Perceptron-Model 13 minLecture15.5
-
Error-Back-Propogation 14 minLecture15.6
-
Multi-Layer-Perceptron-Model 16 minLecture15.7
-
Activation-Function 13 minLecture15.8
-
Delta-Learning-Rule 15 minLecture15.9
-
-
[ ML ] [Module 6]:- Dimensionality Reduction 4
-
PCA (Principal component Analysis ) Concept 14 minLecture16.1
-
Dimensionality Reduction 08 minLecture16.2
-
PCA (Principal Component Analysis) Sum 19 minLecture16.3
-
Module 6 NotesLecture16.4
-
-
[ML] Notes + IMP Soln 2025 6
-
Module 1 – Introduction to Machine LearningLecture17.1
-
Module 2 – Mathematical Foundations for Machine LearningLecture17.2
-
Module 3 – Linear ModelsLecture17.3
-
Module 4 – ClusteringLecture17.4
-
Module 5 – Classification ModelsLecture17.5
-
Module 6 – Dimensionality ReductionLecture17.6
-
-
[ CNS ] Module 01:- Introduction to Network Security & Cryptography 11
-
Introduction to Cryptography and Security System 09 minLecture18.1
-
Security Goals and Mechanism 10 minLecture18.2
-
Symmetric Cipher 02 minLecture18.3
-
Mono Alphabetic Cipher 08 minLecture18.4
-
Poly Alphabetic Cipher 07 minLecture18.5
-
Substitution Cipher 14 minLecture18.6
-
Transposition Cipher 07 minLecture18.7
-
Euler’s Phi FunctionLecture18.8
-
HILL-CIPHER PYQ 19 minLecture18.9
-
Steganography 11 minLecture18.10
-
Playfair-Cipher- numerical PYQ 24 minLecture18.11
-
-
[ CNS ] Module 02:- Block Cipher and Public Key Cryptography 11
-
Block Cipher and Modes of Block Cipher Part 1 20 minLecture19.1
-
Block Cipher and Modes of Block Cipher Part 2 18 minLecture19.2
-
Stream and Block Cipher 04 minLecture19.3
-
Modes of Operation 08 minLecture19.4
-
DES Algorithm Full Working 12 minLecture19.5
-
DES key Generation Explain Step by Step 11 minLecture19.6
-
AES Algorithm Full working 26 minLecture19.7
-
Public Key cryptogrpahy 03 minLecture19.8
-
RSA Algorithm with Solved Example 14 minLecture19.9
-
Diffie Hellman 07 minLecture19.10
-
How to find modulus of Exponential Number (high power value ) 12 minLecture19.11
-
-
[ CNS ] Module 03:- Cryptographic Hashes, Message Digests - Digita 6
-
Hash-Function & its Properties 13 minLecture20.1
-
MD5 (Message Digest Algorithm) 24 minLecture20.2
-
SHA-1 Algorithm Full Working 23 minLecture20.3
-
MAC 07 minLecture20.4
-
Digital Certificate 10 minLecture20.5
-
X.509 Digital Certificate 21 minLecture20.6
-
-
[ CNS ] Module 04:- Digital Signature Schemes & Authentication 4
-
Authentication-Protocol 13 minLecture21.1
-
Digital Signature Full working Explained 19 minLecture21.2
-
Needam Schroeder Protocol 22 minLecture21.3
-
RSA Algorithm with Solved Example 19 minLecture21.4
-
-
[ CNS ] Module 05:-M5 - System Security 5
-
Memory & Address Protection Part-2 19 minLecture22.1
-
Memory & Address Protection Part-1 15 minLecture22.2
-
FIle Protection 10 minLecture22.3
-
Database Security 13 minLecture22.4
-
Multilevel Database Security 12 minLecture22.5
-
-
[ CNS ] Module 6 - Web Security 6
-
Session Hijacking 25 minLecture23.1
-
Firewall & types 19 minLecture23.2
-
SSL ( Secure Socket Layer protocol ) 17 minLecture23.3
-
Penetration Testing 17 minLecture23.4
-
Web-Security 14 minLecture23.5
-
Web-Browser Attack 16 minLecture23.6
-
-
[ CSS ] Notes + IMP 7
-
Cryptography and System Security Importance 2025Lecture24.1
-
M1 – Introduction to Number TheoryLecture24.2
-
M2- Block Ciphers & Public Key CryptographyLecture24.3
-
M3 – Cryptographic Hashes, Message Digests and Digital CertificatesLecture24.4
-
M4- Digital Signature Schemes and Authentication ProtocolsLecture24.5
-
M5- System SecurityLecture24.6
-
M6- Web SecurityLecture24.7
-
-
[ DAV ] [ Module 1 ] : Introduction to Data Analytics and Lifecycle 1
-
Introduction to Data Analytics and LifeCycle 21 minLecture25.1
-
-
[ DAV ] [ Module 2 ] : Regression Model 3
-
Numericals on Regression Part-2 17 minLecture26.1
-
Numericals on Regression Part-1 22 minLecture26.2
-
Numericals on Regression Part-3 18 minLecture26.3
-
-
[ DAV ] [ Module 3 ] : Time Series Analysis 4
Coming Soon
-
Time Series Analysis Its Components 14 minLecture27.1
-
Box Jenkins Intervention Analysis 13 minLecture27.2
-
ARIMA-Model-and-Its-Pros-&-Cons 13 minLecture27.3
-
Difference-Between-ARMA-&-ARIMA 12 minLecture27.4
-
-
[ DAV ] [ Module 4 ] : Text Analytics 2
-
Explain Steps of Text Analysis 15 minLecture28.1
-
Seven Practice Areas of Text Analytics 13 minLecture28.2
-
-
[ DAV ] [ Module 5 ] : Data analytics and visualization with R 12
-
Introduction – R Programming – #1 12 minLecture29.1
-
Introduction – R Programming – #2 16 minLecture29.2
-
Vectors in R Programming 17 minLecture29.3
-
Objects in R Programming 18 minLecture29.4
-
Interacting With Users 12 minLecture29.5
-
Script in R 13 minLecture29.6
-
Plot in R 17 minLecture29.7
-
Exploring Dataset in R 25 minLecture29.8
-
Dirty Data Detection In Exploration Phase 21 minLecture29.9
-
Data import and export in R 32 minLecture29.10
-
Visualization in R 16 minLecture29.11
-
Function in R 12 minLecture29.12
-
-
[ DAV ] Notes 6
-
Module wise Imp 3
-
Cryptography and System Security Sem 6 AIMLLecture31.1
-
Machine Learning Importance Modulewise 2025Lecture31.2
-
DAV Importance Modulewise 2025Lecture31.3
-
This content is protected, please login and enroll course to view this content!
Prev
Integration Testing
Next
White Box Testing

