-
About the Course 0
No items in this section -
Computer Network [Module 1]:- Introduction to Computer Networks 9
-
Introduction to Computer Networks 12 minLecture2.1
-
Network Topologies 12 minLecture2.2
-
Network Connecting Devices 11 minLecture2.3
-
Connection-Oriented vs Connection-Less Communication 09 minLecture2.4
-
OSI Reference Model 07 minLecture2.5
-
TCP-IP Reference Model 07 minLecture2.6
-
OSI vs TCP-IP Model Comparision 08 minLecture2.7
-
Network Classification LAN, MAN, WAN 08 minLecture2.8
-
Virtual Lan’s 08 minLecture2.9
-
-
Computer Network [Module 2]:- Physical and Data Link layer 16
-
Transmission Media: Guided and Unguided [Difference] 09 minLecture3.1
-
Twisted-Pair Cables 08 minLecture3.2
-
CoAxial Cable 07 minLecture3.3
-
Framing and it’s Methods 08 minLecture3.4
-
Fiber Optics Part [01] 11 minLecture3.5
-
Fiber Optics Part [02] 11 minLecture3.6
-
Error Detection and its Methods 08 minLecture3.7
-
Hamming Code 10 minLecture3.8
-
Cyclic Redundancy Check Part [01] 09 minLecture3.9
-
Cyclic Redundancy Check Part [02] 05 minLecture3.10
-
Parity Checking and Checksum Error Detection 09 minLecture3.11
-
Flow Control: Stop and Wait and Sliding Window Protocol 08 minLecture3.12
-
Go Back- N ARQ System 08 minLecture3.13
-
SDLC protocol 05 minLecture3.14
-
HDLC protocol 12 minLecture3.15
-
Carrier Sense Multiple Access-Collision Detection Procedure (CSMA-CD) 07 minLecture3.16
-
-
Computer Network [Module 3]:- Network Layer 8
-
IP address vs MAC address 09 minLecture4.1
-
IPv4 Header Format 13 minLecture4.2
-
IPv4 vs IPv6 10 minLecture4.3
-
Routing Algorithms Part 01 12 minLecture4.4
-
Routing Algorithms Part 02 10 minLecture4.5
-
ARP & RARP 07 minLecture4.6
-
Leaky Bucket Algorithm 05 minLecture4.7
-
Token Bucket Algorithm 06 minLecture4.8
-
-
Computer Network [Module 4]:- Transport and Application Layer 6
-
Berkeley Sockets 07 minLecture5.1
-
Domain Name Server – DNS 06 minLecture5.2
-
User Datagram Protocol 07 minLecture5.3
-
Simple Mail Transfer Protocol – SMTP 05 minLecture5.4
-
Hypertext Transfer Protocol – HTTP 08 minLecture5.5
-
File Transfer Protocol – FTP 05 minLecture5.6
-
-
Computer Network [Module 5]:- Enterprise Network Design 2
-
Cisco SONA Architecture 13 minLecture6.1
-
PPDIOO Methodology 07 minLecture6.2
-
-
Computer Network [Module 6]:- Software Defined Networks 2
-
Software Defined Networks 08 minLecture7.1
-
Open Flow Controllers – PoX and NoX 07 minLecture7.2
-
-
Computer Network [Notes]:- Data Warehousing Fundamentals 1
-
Introduction To NetworkingLecture8.1
-
-
Computer Network [Notes]:- Physical Layer 1
-
Physical LayerLecture9.1
-
-
Computer Network [Notes]:- Data Link Layer 2
-
Medium Access Control SublayerLecture10.1
-
Data Link LayerLecture10.2
-
-
Computer Network [Notes]:- Network Layer 1
-
Network LayerLecture11.1
-
-
Computer Network [Notes]:- Transport Layer 1
-
Transport LayerLecture12.1
-
-
Computer Network [Notes]:- Application Layer 1
-
Application LayerLecture13.1
-
-
Computer Network [ Importance ] :- 10
-
IPv4 & IPv6 [ Numerical Notes ]Lecture14.1
-
Cyclic Redundancy Sums [ Numerical Notes ]Lecture14.2
-
Error Hamming [ Numerical Notes ]Lecture14.3
-
Introduction To NetworkingLecture14.4
-
Physical Layer & Data Link LayerLecture14.5
-
Network LayerLecture14.6
-
Transport Layer & Application LayerLecture14.7
-
Enterprise Network DesignLecture14.8
-
Software Defined NetworksLecture14.9
-
[Extra] Previously Asked Important QuestionsLecture14.10
-
-
Computer Network [Viva Questions]:- 6
-
Physical LayerLecture15.1
-
IntroductionLecture15.2
-
Data Link LayerLecture15.3
-
Network layerLecture15.4
-
Transport LayerLecture15.5
-
Application LayerLecture15.6
-
-
Data Warehouse and Data Mining [Module 1]:- Data Warehousing Fundamentals 10
-
Introduction to Data Warehouse 11 minLecture16.1
-
Meta Data 05 minLecture16.2
-
Data Mart 06 minLecture16.3
-
Data Warehouse Architecture 07 minLecture16.4
-
How to Draw Star , Smowflake and Fack Constelation Basics 10 minLecture16.5
-
Numericals on Star , Snowflake and Fact Constelation [ Part 1 ] 16 minLecture16.6
-
Numericals on Star , Snowflake and Fact Constelation [ Part 2 ] 11 minLecture16.7
-
What is Olap Operations 08 minLecture16.8
-
OLAP VS OLTP 08 minLecture16.9
-
Extract Transform and Load (ETL) 09 minLecture16.10
-
-
Data Warehouse and Data Mining [Module 2]:- Introduction to Data Mining, Data Exploration 7
-
Introduction to Data Mining and Architecture 10 minLecture17.1
-
KDD Process in Data Mining 09 minLecture17.2
-
Types of Attribute 09 minLecture17.3
-
Data Visualization Part #1 11 minLecture17.4
-
Data Visualization Part #2 11 minLecture17.5
-
Data Preprocessing Part #1 17 minLecture17.6
-
Data Preprocessing Part #2 09 minLecture17.7
-
-
Data Warehouse and Data Mining [Module 3]:- Classification 4
-
Naive Bayes Numerical Solved Example [ Nov 2022 ] [ 10 Marks ] 12 minLecture18.1
-
Naive Bayes Part #2 25 minLecture18.2
-
Naive Bayes Part #1 18 minLecture18.3
-
Decision Tree 24 minLecture18.4
-
-
Data Warehouse and Data Mining [Module 4]:- Clustering 6
-
K Mean clustering with Example [ Type 1 ] 12 minLecture19.1
-
K Mean clustering with Example [ Type 2 ] 23 minLecture19.2
-
K Mean Numerical Solved Example [ May 2022 , May 2023 ] [ 10 Marks ] 11 minLecture19.3
-
K Medoid with Example 21 minLecture19.4
-
Agglomerative Clustering Algorithm with Example 13 minLecture19.5
-
Agglomerative Adjacency Matrix using Euclidean Distance with Solved Example 05 minLecture19.6
-
-
Data Warehouse and Data Mining [Module 5]:-Mining frequent patterns and associations 2
-
Apiori Algoirthm with Solved Example 12 minLecture20.1
-
FP Tree Algorithm with Solved Example 15 minLecture20.2
-
-
Data Warehouse and Data Mining [Module 6]:- Web Mining 4
-
Web content mining 06 minLecture21.1
-
Web Mining 07 minLecture21.2
-
Page rank Algorithm 06 minLecture21.3
-
HITTS Algorithm [ Hubs and Authority ] 12 minLecture21.4
-
-
Data Warehouse and Data Mining [Notes]:- 2
-
Data Warehouse and Data Mining NOTESLecture22.1
-
Data Warehouse and Data Mining ImportanceLecture22.2
-
-
Data Warehouse and Data Mining [Viva Question]:- 6
-
IntroductionLecture23.1
-
Introduction to Data Mining,Data Exploration and Data Pre-processingLecture23.2
-
ClusteringLecture23.3
-
ClassificationLecture23.4
-
Mining frequent patterns and associationsLecture23.5
-
Web MiningLecture23.6
-
-
Data Warehouse and Data Mining [ Importance ] :- 6
-
Data Warehouse and Data Mining ImportanceLecture24.1
-
Data Warehouse and Data Mining NOTESLecture24.2
-
DWMLecture24.3
-
K Mean Numerical Solved ExampleLecture24.4
-
Naive Bayes Numerical Solved ExampleLecture24.5
-
Star and Snowflake Schema NumericalsLecture24.6
-
-
Artificial Intelligence 46
-
AI Introduction + Detail Syllabus Analysis of All Modules [Module-1] 17 minLecture25.1
-
Agent and Peas Description [Module-2] 08 minLecture25.2
-
Types of Agent [Module-2] 09 minLecture25.3
-
Learning Agent [Module-2] 09 minLecture25.4
-
BFS Algorithm with solved Example [Module-3] 06 minLecture25.5
-
DFS ( Depth First Search ) Algorithm with solved Example [Module-3] 03 minLecture25.6
-
IDFS ( Iterative Depth First Search ) Algorithm with solved Example [Module-3] 03 minLecture25.7
-
GBFS Solved Example [Module-3] 08 minLecture25.8
-
A star Solved Example [Module-3] 14 minLecture25.9
-
Hill Climbing [Module-3] 04 minLecture25.10
-
Hill Climbing algorithm [Module-3] 06 minLecture25.11
-
Genetic Algorithm [Module-3] 06 minLecture25.12
-
Genetic Algorithm Max one Problem Solved Example [Module-3] 09 minLecture25.13
-
Min Max Solved Example [Module-3] 07 minLecture25.14
-
Alpha-Beta Pruning Solved Example [Module-3] 14 minLecture25.15
-
Propositional Logic (PL) Introduction [Module-4] 08 minLecture25.16
-
PL to CNF Conversion With Solved Example [Module-4] 10 minLecture25.17
-
First-Order Logic (FOL) Solved Example [Module-4] 06 minLecture25.18
-
Resolution Tree Sum Part #1 [Module-4] 09 minLecture25.19
-
Resolution Tree Sum Part #2 [Module-4] 15 minLecture25.20
-
Forward Chaining Criminal Numerical [Module-4] 18 minLecture25.21
-
Backward Chaining – Criminal Numerical [Module-4] 11 minLecture25.22
-
Introduction To Prolog [Module-4] 10 minLecture25.23
-
Unification [Module-4] 07 minLecture25.24
-
Resolution, Backtracking & Recursion [Module-4] 13 minLecture25.25
-
[Solved With Code] Factorial Using Prolog [Module-4] 09 minLecture25.26
-
[Solved With Code] Family Tree Using Prolog [Module-4] 17 minLecture25.27
-
Bayesian Belief Network [Module-5] 16 minLecture25.28
-
Bayesian Network toothache and Cavity sum [Module-5] 12 minLecture25.29
-
Partial Order Planning with Example [Module-6] 11 minLecture25.30
-
Supervised and Unsupervised Learning (AI and SC) [Module-6] 07 minLecture25.31
-
Ensemble learning [Module-6] 04 minLecture25.32
-
Expert System [Module-6] 10 minLecture25.33
-
Module 1 [Notes]Lecture25.34
-
Module 2 [Notes]Lecture25.35
-
Module 3 [Notes]Lecture25.36
-
Module 4 [Notes]Lecture25.37
-
Module 5 [Notes]Lecture25.38
-
Module 6 [Notes]Lecture25.39
-
AI IMPLecture25.40
-
Module 1{IMP}Lecture25.41
-
Module 2[IMP]Lecture25.42
-
Module 3[IMP]Lecture25.43
-
Module 4[IMP]Lecture25.44
-
Module 5[IMP]Lecture25.45
-
Module 6[IMP]Lecture25.46
-
-
Web Computing [ Module 01] - Web Programming Fundamentals 6
-
Working of Web Browser 11 minLecture26.1
-
Hypertext Transfer Protocol – HTTP 09 minLecture26.2
-
Domain Name Server – DNS 06 minLecture26.3
-
XML 11 minLecture26.4
-
JSON – Syntax, Uses, Array, Nested 09 minLecture26.5
-
REST – API Methods 13 minLecture26.6
-
-
Web Computing [ Module 02] - JavaScript 25
-
Introduction & Setup 12 minLecture27.1
-
Variables 10 minLecture27.2
-
Variables – let, var & const 14 minLecture27.3
-
Data Types 16 minLecture27.4
-
Type Conversion 14 minLecture27.5
-
Type Coercion 10 minLecture27.6
-
Operators – #1 20 minLecture27.7
-
Operators – #2 23 minLecture27.8
-
Conditional Statements 17 minLecture27.9
-
Switch Case & Ternary Operator 11 minLecture27.10
-
Loops 16 minLecture27.11
-
Arrays And Methods 17 minLecture27.12
-
String And Methods 16 minLecture27.13
-
Objects 16 minLecture27.14
-
For.in and for loop 08 minLecture27.15
-
Function 18 minLecture27.16
-
Function Expression 19 minLecture27.17
-
Scopes 16 minLecture27.18
-
Math 14 minLecture27.19
-
Date , Time 14 minLecture27.20
-
Map,Filter,Reduce 16 minLecture27.21
-
Error Handling 15 minLecture27.22
-
This Keyword 19 minLecture27.23
-
Call,Apply,Bind 20 minLecture27.24
-
Asynchronous js 12 minLecture27.25
-
-
Web Computing [ Module 03 & 04]- React Js & Advanced React Js 7
-
Introduction To ReactJs 15 minLecture28.1
-
Hello React with a single page app 19 minLecture28.2
-
React Components 22 minLecture28.3
-
Props in React 24 minLecture28.4
-
States in React 19 minLecture28.5
-
React Router 11 minLecture28.6
-
useEffect 16 minLecture28.7
-
-
Web Computing [ Module 06] - Express Js 3
-
Introduction To Express Js 23 minLecture29.1
-
Authentication Using Cookies [With Code] 29 minLecture29.2
-
REST – API Methods 13 minLecture29.3
-
-
Web Computing [ Module 05] - Node Js 4
-
Introduction To NodeJs 15 minLecture30.1
-
NodeJs Event Loop 19 minLecture30.2
-
File System Module (fs) 12 minLecture30.3
-
Streams And Buffer 21 minLecture30.4
-
-
Web Computing [ Viva ] 4
-
Module 1Lecture31.1
-
Module 2Lecture31.2
-
Module 3 & 6Lecture31.3
-
Module 4Lecture31.4
-
-
Web Computing [ Importance Solutions Modulewise ] 5
-
Module 01Lecture32.1
-
Module 02Lecture32.2
-
Module 03 & 04Lecture32.3
-
Module 05Lecture32.4
-
Module 06Lecture32.5
-

