-
Machine Learning ~ Section 01 : Introduction & Supervised / Unsupervised Learning 4
-
Machine Learning and its Uses and Roles 10 minLecture1.1
-
1.1 Introduction 07 minLecture1.2
-
1.2 Types of Machine Learning 05 minLecture1.3
-
1.3 Different Supervised Learning Algorithms 06 minLecture1.4
-
-
Python ~ Section 01 : Introduction And Getting The Right Tools! 1
-
1.1 Introduction And Installation 05 minLecture2.1
-
-
Python ~ Section 02 : Basic I/O, Operators & Using IDE 5
-
2.1 Numbers and Strings 07 minLecture3.1
-
2.2 Lists and Dictionaries 07 minLecture3.2
-
2.3 Assignment Operators 05 minLecture3.3
-
2.4 Development Environment 04 minLecture3.4
-
2.5 Visual Studio Code: [VS_Code] 07 minLecture3.5
-
-
Python ~ Section 03 : Conditional Statements & Looping ! 5
-
3.1 Conditional Statements 05 minLecture4.1
-
3.2 User Input 05 minLecture4.2
-
3.3 WHILE Loop 05 minLecture4.3
-
3.4 FOR Loop 03 minLecture4.4
-
3.5 FOR Loop: (Dictionary Enumeration) 05 minLecture4.5
-
-
Python ~ Section 04 : OOPS! Functions, Classes & Exception Handling 4
-
4.1 Functions 07 minLecture5.1
-
4.2 Class and Objects 04 minLecture5.2
-
4.3 Constructors 05 minLecture5.3
-
4.4 Exception handling 07 minLecture5.4
-
-
Python ~ Section 05 : Python Modules & Experiencing Jupyter ! 5
-
5.1 Modules 06 minLecture6.1
-
5.2 Statistics Module 04 minLecture6.2
-
5.3 CSV Module 08 minLecture6.3
-
5.4 PIP 04 minLecture6.4
-
5.5 Jupyter Note Book 07 minLecture6.5
-
-
Python ~ Section 06 : Tkinter, SQL in Python & File Management 3
-
6.1 SQLite 10 minLecture7.1
-
6.2 Tkinter 11 minLecture7.2
-
6.3 Making [.exe] in Python 08 minLecture7.3
-
-
[Bonus] Python Hands-On Projects + Source Code 4
-
Rock Paper Scissor Python Game 13 minLecture8.1
-
Message Encode Decode in Python Project 15 minLecture8.2
-
Calculator in Python 25 minLecture8.3
-
Source Code of all 3 ProjectsLecture8.4
-
-
Python Assignments 2
-
Assignment No. 1Lecture9.1
-
Assignment No. 2Lecture9.2
-
-
Machine Learning ~ Section 02 : Regression [Models, Implementation] 13
-
2.1 Linear Regression + Introduction 10 minLecture10.1
-
2.2 Linear Regression Mathematics 13 minLecture10.2
-
2.3 Linear Regression Implementation 13 minLecture10.3
-
2.4 Regression Using Karl Pearsons Coefficient 05 minLecture10.4
-
2.5 Linear Regression using Karlpearson Coefficient Implementation 06 minLecture10.5
-
2.6 Linear Regression Library Implementation 05 minLecture10.6
-
2.7 Loss Analysis Using Mse 08 minLecture10.7
-
2.8 Mean Squared Error (MSE) 04 minLecture10.8
-
2.9 Goodness Of Fit 10 minLecture10.9
-
2.10 R-Squared Implementation 03 minLecture10.10
-
2.11 R Squared Using Karl Pearson Coefficient 05 minLecture10.11
-
2.12 R Squared Using Karl Pearson 05 minLecture10.12
-
2.13 Library Implementation of Metrics 03 minLecture10.13
-
-
Machine Learning ~ Section 03 : Data Processing & Pandas 4
-
3.1 Loss Optimizer 09 minLecture11.1
-
3.2 Gradient Descent Implementation 09 minLecture11.2
-
3.3 Data Processing Using Pandas 11 minLecture11.3
-
3.4 Train Test Split 06 minLecture11.4
-
-
Machine Learning ~ Section 04 : Classification, Score Analysis & [Bonus] Google Colabration 9
-
4.1 Classification Models 08 minLecture12.1
-
4.2 Logistic Regression 05 minLecture12.2
-
4.3 Loss For Classification Models 03 minLecture12.3
-
4.4 Log Loss Implementation 07 minLecture12.4
-
4.5 Score Analysis Basics 05 minLecture12.5
-
4.6 Confusion Matrix Implementation 08 minLecture12.6
-
4.7 Precision and Recall 07 minLecture12.7
-
4.8 F1 Score 05 minLecture12.8
-
[Bonus] Google Collaboration 09 minLecture12.9
-
-
Machine Learning ~ Section 05 : K-Means Clustering, Decision Tree Classifier, Support Vector Information 6
-
5.1 K Nearest neighbors 08 minLecture13.1
-
5.2 Iris 10 minLecture13.2
-
5.3 Support Vector Machine 10 minLecture13.3
-
5.4 Decision Tree Classifier 06 minLecture13.4
-
5.5 Digit Classification 08 minLecture13.5
-
5.6 K Means Clustering 13 minLecture13.6
-
Machine Learning and its Uses and Roles
Machine Learning and its Uses and Roles
Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Machine learning focuses on the development of computer programs that can access data and use it to learn for themselves.
Prepare For Your Placements: https://lastmomenttuitions.com/courses/placement-preparation/
![]()
/ Youtube Channel: https://www.youtube.com/channel/UCGFNZxMqKLsqWERX_N2f08Q
Follow For Latest Updates, Study Tips & More Content!
Next
1.1 Introduction
