- 
	
    Machine Learning ~ Section 01 : Introduction & Supervised / Unsupervised Learning 4- 
				
                Machine Learning and its Uses and Roles 10 minLecture1.1
- 
				
                1.1 Introduction 07 minLecture1.2
- 
				
                1.2 Types of Machine Learning 05 minLecture1.3
- 
				
                1.3 Different Supervised Learning Algorithms 06 minLecture1.4
 
- 
				
                
- 
	
    Python ~ Section 01 : Introduction And Getting The Right Tools! 1- 
				
                1.1 Introduction And Installation 05 minLecture2.1
 
- 
				
                
- 
	
    Python ~ Section 02 : Basic I/O, Operators & Using IDE 5- 
				
                2.1 Numbers and Strings 07 minLecture3.1
- 
				
                2.2 Lists and Dictionaries 07 minLecture3.2
- 
				
                2.3 Assignment Operators 05 minLecture3.3
- 
				
                2.4 Development Environment 04 minLecture3.4
- 
				
                2.5 Visual Studio Code: [VS_Code] 07 minLecture3.5
 
- 
				
                
- 
	
    Python ~ Section 03 : Conditional Statements & Looping ! 5- 
				
                3.1 Conditional Statements 05 minLecture4.1
- 
				
                3.2 User Input 05 minLecture4.2
- 
				
                3.3 WHILE Loop 05 minLecture4.3
- 
				
                3.4 FOR Loop 03 minLecture4.4
- 
				
                3.5 FOR Loop: (Dictionary Enumeration) 05 minLecture4.5
 
- 
				
                
- 
	
    Python ~ Section 04 : OOPS! Functions, Classes & Exception Handling 4- 
				
                4.1 Functions 07 minLecture5.1
- 
				
                4.2 Class and Objects 04 minLecture5.2
- 
				
                4.3 Constructors 05 minLecture5.3
- 
				
                4.4 Exception handling 07 minLecture5.4
 
- 
				
                
- 
	
    Python ~ Section 05 : Python Modules & Experiencing Jupyter ! 5- 
				
                5.1 Modules 06 minLecture6.1
- 
				
                5.2 Statistics Module 04 minLecture6.2
- 
				
                5.3 CSV Module 08 minLecture6.3
- 
				
                5.4 PIP 04 minLecture6.4
- 
				
                5.5 Jupyter Note Book 07 minLecture6.5
 
- 
				
                
- 
	
    Python ~ Section 06 : Tkinter, SQL in Python & File Management 3- 
				
                6.1 SQLite 10 minLecture7.1
- 
				
                6.2 Tkinter 11 minLecture7.2
- 
				
                6.3 Making [.exe] in Python 08 minLecture7.3
 
- 
				
                
- 
	
    [Bonus] Python Hands-On Projects + Source Code 4- 
				
                Rock Paper Scissor Python Game 13 minLecture8.1
- 
				
                Message Encode Decode in Python Project 15 minLecture8.2
- 
				
                Calculator in Python 25 minLecture8.3
- 
				
                Source Code of all 3 ProjectsLecture8.4
 
- 
				
                
- 
	
    Python Assignments 2- 
				
                Assignment No. 1Lecture9.1
- 
				
                Assignment No. 2Lecture9.2
 
- 
				
                
- 
	
    Machine Learning ~ Section 02 : Regression [Models, Implementation] 13- 
				
                2.1 Linear Regression + Introduction 10 minLecture10.1
- 
				
                2.2 Linear Regression Mathematics 13 minLecture10.2
- 
				
                2.3 Linear Regression Implementation 13 minLecture10.3
- 
				
                2.4 Regression Using Karl Pearsons Coefficient 05 minLecture10.4
- 
				
                2.5 Linear Regression using Karlpearson Coefficient Implementation 06 minLecture10.5
- 
				
                2.6 Linear Regression Library Implementation 05 minLecture10.6
- 
				
                2.7 Loss Analysis Using Mse 08 minLecture10.7
- 
				
                2.8 Mean Squared Error (MSE) 04 minLecture10.8
- 
				
                2.9 Goodness Of Fit 10 minLecture10.9
- 
				
                2.10 R-Squared Implementation 03 minLecture10.10
- 
				
                2.11 R Squared Using Karl Pearson Coefficient 05 minLecture10.11
- 
				
                2.12 R Squared Using Karl Pearson 05 minLecture10.12
- 
				
                2.13 Library Implementation of Metrics 03 minLecture10.13
 
- 
				
                
- 
	
    Machine Learning ~ Section 03 : Data Processing & Pandas 4- 
				
                3.1 Loss Optimizer 09 minLecture11.1
- 
				
                3.2 Gradient Descent Implementation 09 minLecture11.2
- 
				
                3.3 Data Processing Using Pandas 11 minLecture11.3
- 
				
                3.4 Train Test Split 06 minLecture11.4
 
- 
				
                
- 
	
    Machine Learning ~ Section 04 : Classification, Score Analysis & [Bonus] Google Colabration 9- 
				
                4.1 Classification Models 08 minLecture12.1
- 
				
                4.2 Logistic Regression 05 minLecture12.2
- 
				
                4.3 Loss For Classification Models 03 minLecture12.3
- 
				
                4.4 Log Loss Implementation 07 minLecture12.4
- 
				
                4.5 Score Analysis Basics 05 minLecture12.5
- 
				
                4.6 Confusion Matrix Implementation 08 minLecture12.6
- 
				
                4.7 Precision and Recall 07 minLecture12.7
- 
				
                4.8 F1 Score 05 minLecture12.8
- 
				
                [Bonus] Google Collaboration 09 minLecture12.9
 
- 
				
                
- 
	
    Machine Learning ~ Section 05 : K-Means Clustering, Decision Tree Classifier, Support Vector Information 6- 
				
                5.1 K Nearest neighbors 08 minLecture13.1
- 
				
                5.2 Iris 10 minLecture13.2
- 
				
                5.3 Support Vector Machine 10 minLecture13.3
- 
				
                5.4 Decision Tree Classifier 06 minLecture13.4
- 
				
                5.5 Digit Classification 08 minLecture13.5
- 
				
                5.6 K Means Clustering 13 minLecture13.6
 
- 
				
                
2.3 Linear Regression Implementation
Linear Regression Implementation
Linear Regression Implementation Algorithm is a machine learning algorithm based on supervised learning. Linear regression is a part of regression analysis. Regression analysis is a technique of predictive modelling that helps you to find out the relationship between Input and the target variable. The ultimate goal of the regression algorithm is to plot a best-fit line or a curve between the data. The three main metrics that are used for evaluating the trained regression model are variance, bias and error.
Prepare For Your Placements: https://lastmomenttuitions.com/courses/placement-preparation/

/ Youtube Channel: https://www.youtube.com/channel/UCGFNZxMqKLsqWERX_N2f08Q
Follow For Latest Updates, Study Tips & More Content!



