-
Data Warehouse and Data Mining [Module 1]:- Data Warehousing Fundamentals 10
-
Introduction to Data Warehouse 11 minLecture1.1
-
Meta Data 05 minLecture1.2
-
Data Mart 06 minLecture1.3
-
Data Warehouse Architecture 07 minLecture1.4
-
How to Draw Star , Smowflake and Fack Constelation Basics 10 minLecture1.5
-
Numericals on Star , Snowflake and Fact Constelation [ Part 1 ] 16 minLecture1.6
-
Numericals on Star , Snowflake and Fact Constelation [ Part 2 ] 11 minLecture1.7
-
What is Olap Operations 08 minLecture1.8
-
OLAP VS OLTP 08 minLecture1.9
-
Extract Transform and Load (ETL) 09 minLecture1.10
-
-
Data Warehouse and Data Mining [Module 2]:- Introduction to Data Mining, Data Exploration 7
-
Introduction to Data Mining and Architecture 10 minLecture2.1
-
KDD Process in Data Mining 09 minLecture2.2
-
Types of Attribute 09 minLecture2.3
-
Data Visualization Part #1 11 minLecture2.4
-
Data Visualization Part #2 11 minLecture2.5
-
Data Preprocessing Part #1 17 minLecture2.6
-
Data Preprocessing Part #2 09 minLecture2.7
-
-
Data Warehouse and Data Mining [Module 3]:- Classification 4
-
Naive Bayes Numerical Solved Example [ Nov 2022 ] [ 10 Marks ]Lecture3.1
-
Naive Bayes Part #2 25 minLecture3.2
-
Naive Bayes Part #1 18 minLecture3.3
-
Decision Tree 24 minLecture3.4
-
-
Data Warehouse and Data Mining [Module 4]:- Clustering 6
-
K Mean clustering with Example [ Type 1 ] 12 minLecture4.1
-
K Mean clustering with Example [ Type 2 ] 23 minLecture4.2
-
K Mean Numerical Solved Example [ May 2022 , May 2023 ] [ 10 Marks ]Lecture4.3
-
K Medoid with Example 21 minLecture4.4
-
Agglomerative Clustering Algorithm with Example 13 minLecture4.5
-
Agglomerative Adjacency Matrix using Euclidean Distance with Solved Example 05 minLecture4.6
-
-
Data Warehouse and Data Mining [Module 5]:-Mining frequent patterns and associations 2
-
Apiori Algoirthm with Solved Example 12 minLecture5.1
-
FP Tree Algorithm with Solved Example 15 minLecture5.2
-
-
Data Warehouse and Data Mining [Module 6]:- Web Mining 4
-
Web content mining 06 minLecture6.1
-
Web Mining 07 minLecture6.2
-
Page rank Algorithm 06 minLecture6.3
-
HITTS Algorithm [ Hubs and Authority ] 12 minLecture6.4
-
-
Data Warehouse and Data Mining [Notes]:- 2
-
Data Warehouse and Data Mining NOTESLecture7.1
-
Data Warehouse and Data Mining ImportanceLecture7.2
-
-
Data Warehouse and Data Mining [Viva Question]:- 6
-
IntroductionLecture8.1
-
Introduction to Data Mining,Data Exploration and Data Pre-processingLecture8.2
-
ClusteringLecture8.3
-
ClassificationLecture8.4
-
Mining frequent patterns and associationsLecture8.5
-
Web MiningLecture8.6
-
-
Data Warehouse and Data Mining [ Importance ] :- 6
-
Data Warehouse and Data Mining ImportanceLecture9.1
-
Data Warehouse and Data Mining NOTESLecture9.2
-
DWMLecture9.3
-
K Mean Numerical Solved ExampleLecture9.4
-
Naive Bayes Numerical Solved ExampleLecture9.5
-
Star and Snowflake Schema NumericalsLecture9.6
-
