- 
	
    
Course Overview 0
No items in this section - 
	
    
Index 29
- 
				
                Introduction to Data Warehouse 11 minLecture2.1
 - 
				
                Meta Data 05 minLecture2.2
 - 
				
                Data Mart 06 minLecture2.3
 - 
				
                Data Warehouse Architecture 07 minLecture2.4
 - 
				
                How to draw star schema 10 minLecture2.5
 - 
				
                Olap Operations 08 minLecture2.6
 - 
				
                OLAP VS OLTP 08 minLecture2.7
 - 
				
                K-Mean 12 minLecture2.8
 - 
				
                Introduction to Data Mining 10 minLecture2.9
 - 
				
                Naive Bayes Part #1 18 minLecture2.10
 - 
				
                Apriori algorithm 12 minLecture2.11
 - 
				
                Agglomerative Clustering 13 minLecture2.12
 - 
				
                Knowledge Discovery in Database (KDD) 09 minLecture2.13
 - 
				
                Extract Transform and Load (ETL) 09 minLecture2.14
 - 
				
                FP-Tree 15 minLecture2.15
 - 
				
                Decision Tree 24 minLecture2.16
 - 
				
                K -Medoids 21 minLecture2.17
 - 
				
                Naive Bayes Part #2 25 minLecture2.18
 - 
				
                Agglomerative Adjacency Matrix 05 minLecture2.19
 - 
				
                DBSCAN 04 minLecture2.20
 - 
				
                Design Strategy of Data warehouse and Data Mining 12 minLecture2.21
 - 
				
                Types of Attribute for Data Exploration 09 minLecture2.22
 - 
				
                K mean clustering Sum – Type 2 where K=2 23 minLecture2.23
 - 
				
                Data Preprocessing Part #1 17 minLecture2.24
 - 
				
                Data Preprocessing Part #2 09 minLecture2.25
 - 
				
                Data Visualization Part #1 11 minLecture2.26
 - 
				
                Data Visualization Part #2 11 minLecture2.27
 - 
				
                Schema Design – Dimension Modeling Part #1 16 minLecture2.28
 - 
				
                Schema Design – Dimension Modeling Part #2 11 minLecture2.29
 
 - 
				
                
 - 
	
    
Data Warehouse and Data Mining NOTES and Importance 2
- 
				
                Data Warehouse and Data Mining NOTESLecture3.1
 - 
				
                Data Warehouse and Data Mining ImportanceLecture3.2
 
 - 
				
                
 - 
	
    
Data Warehousing and Mining Viva Question 6
- 
				
                IntroductionLecture4.1
 - 
				
                Introduction to Data Mining,Data Exploration and Data Pre-processingLecture4.2
 - 
				
                ClusteringLecture4.3
 - 
				
                ClassificationLecture4.4
 - 
				
                Mining frequent patterns and associationsLecture4.5
 - 
				
                Web MiningLecture4.6
 
 - 
				
                
 
    This content is protected, please login and enroll course to view this content!
            Next
            
				Olap Operations            
        
	
