-
Course Overview 0
No items in this section -
Index 29
-
Introduction to Data Warehouse 11 minLecture2.1
-
Meta Data 05 minLecture2.2
-
Data Mart 06 minLecture2.3
-
Data Warehouse Architecture 07 minLecture2.4
-
How to draw star schema 10 minLecture2.5
-
Olap Operations 08 minLecture2.6
-
OLAP VS OLTP 08 minLecture2.7
-
K-Mean 12 minLecture2.8
-
Introduction to Data Mining 10 minLecture2.9
-
Naive Bayes Part #1 18 minLecture2.10
-
Apriori algorithm 12 minLecture2.11
-
Agglomerative Clustering 13 minLecture2.12
-
Knowledge Discovery in Database (KDD) 09 minLecture2.13
-
Extract Transform and Load (ETL) 09 minLecture2.14
-
FP-Tree 15 minLecture2.15
-
Decision Tree 24 minLecture2.16
-
K -Medoids 21 minLecture2.17
-
Naive Bayes Part #2 25 minLecture2.18
-
Agglomerative Adjacency Matrix 05 minLecture2.19
-
DBSCAN 04 minLecture2.20
-
Design Strategy of Data warehouse and Data Mining 12 minLecture2.21
-
Types of Attribute for Data Exploration 09 minLecture2.22
-
K mean clustering Sum – Type 2 where K=2 23 minLecture2.23
-
Data Preprocessing Part #1 17 minLecture2.24
-
Data Preprocessing Part #2 09 minLecture2.25
-
Data Visualization Part #1 11 minLecture2.26
-
Data Visualization Part #2 11 minLecture2.27
-
Schema Design – Dimension Modeling Part #1 16 minLecture2.28
-
Schema Design – Dimension Modeling Part #2 11 minLecture2.29
-
-
Data Warehouse and Data Mining NOTES and Importance 2
-
Data Warehouse and Data Mining NOTESLecture3.1
-
Data Warehouse and Data Mining ImportanceLecture3.2
-
-
Data Warehousing and Mining Viva Question 6
-
IntroductionLecture4.1
-
Introduction to Data Mining,Data Exploration and Data Pre-processingLecture4.2
-
ClusteringLecture4.3
-
ClassificationLecture4.4
-
Mining frequent patterns and associationsLecture4.5
-
Web MiningLecture4.6
-
This content is protected, please login and enroll course to view this content!
Next
Olap Operations

