- 
	
    
Week 1 20
- 
				
                1.1 Introduction And Installation 05 minLecture1.1
 - 
				
                1.2 Numbers and Strings 07 minLecture1.2
 - 
				
                1.3 Lists and Dictionaries 07 minLecture1.3
 - 
				
                1.4 Assignment Operators 05 minLecture1.4
 - 
				
                2.1 Development Environment 04 minLecture1.5
 - 
				
                2.2 Visual Studio Code: [VS_Code] 07 minLecture1.6
 - 
				
                2.3 Conditional Statements 05 minLecture1.7
 - 
				
                2.4 User Input 05 minLecture1.8
 - 
				
                2.5 WHILE Loop 05 minLecture1.9
 - 
				
                3.1 FOR Loop 03 minLecture1.10
 - 
				
                3.2 FOR Loop: (Dictionary Enumeration) 05 minLecture1.11
 - 
				
                3.3 Functions 07 minLecture1.12
 - 
				
                4.1 Class and Objects 04 minLecture1.13
 - 
				
                4.2 Constructors 05 minLecture1.14
 - 
				
                5.1 Exception handling 07 minLecture1.15
 - 
				
                5.2 Modules 06 minLecture1.16
 - 
				
                5.3 Statistics Module 04 minLecture1.17
 - 
				
                6.1 CSV Module 08 minLecture1.18
 - 
				
                6.2 PIP 04 minLecture1.19
 - 
				
                6.3 Jupyter Note Book 07 minLecture1.20
 
 - 
				
                
 - 
	
    
Week 2 12
- 
				
                1.1 SQLite 10 minLecture2.1
 - 
				
                2.1 Introduction to ML 07 minLecture2.2
 - 
				
                2.2 Types of Machine Learning 05 minLecture2.3
 - 
				
                2.3 Different Supervised Learning Algorithms 06 minLecture2.4
 - 
				
                3.1 Tkinter 11 minLecture2.5
 - 
				
                3.2 Making [.exe] in Python 08 minLecture2.6
 - 
				
                4.1 Linear Regression + Introduction 10 minLecture2.7
 - 
				
                4.2 Linear Regression Mathematics 13 minLecture2.8
 - 
				
                4.3 Linear Regression Implementation 13 minLecture2.9
 - 
				
                5.1Rock Paper Scissor Python Game 13 minLecture2.10
 - 
				
                6.1 Regression Using Karl Pearson Coefficient 05 minLecture2.11
 - 
				
                6.2 Linear Regression using Karlpearson Coefficient ImplementationLecture2.12
 
 - 
				
                
 - 
	
    
Week 3 12
- 
				
                1.1 Message Encode Decode in Python Project 15 minLecture3.1
 - 
				
                2.1 Linear Regression Library Implementation 05 minLecture3.2
 - 
				
                2.2 Loss Analysis Using Mse 08 minLecture3.3
 - 
				
                2.3 Mean Squared Error 04 minLecture3.4
 - 
				
                3.1 Calculator in Python 25 minLecture3.5
 - 
				
                4.1 Goodness Of Fit 10 minLecture3.6
 - 
				
                4.2 R-Squared Implementation 03 minLecture3.7
 - 
				
                5.1 R Squared Using Karl Pearson Coefficient 05 minLecture3.8
 - 
				
                5.2 R-Square Dusing Kral pearson 05 minLecture3.9
 - 
				
                5.3 Library Implementation of Metrics 03 minLecture3.10
 - 
				
                6.1 Loss Optimizer 09 minLecture3.11
 - 
				
                6.2 Gradient Descent Implementation 09 minLecture3.12
 
 - 
				
                
 - 
	
    
Week 4 17
- 
				
                1.1 Data Processing Using Pandas 11 minLecture4.1
 - 
				
                1.2 Train Test Split 06 minLecture4.2
 - 
				
                1.3 Classification Models 08 minLecture4.3
 - 
				
                2.1 Logistic Regression 05 minLecture4.4
 - 
				
                2.2 Loss For Classification Models 03 minLecture4.5
 - 
				
                2.3 Log Loss Implementation 07 minLecture4.6
 - 
				
                2.4 Score Analysis Basics 05 minLecture4.7
 - 
				
                3.1 Confusion Matrix Implementation 08 minLecture4.8
 - 
				
                3.2 Precision & RecallLecture4.9
 - 
				
                3.3 F1 Score 05 minLecture4.10
 - 
				
                4.1 Google Colabration 09 minLecture4.11
 - 
				
                4.2 K Nearest neighbors 08 minLecture4.12
 - 
				
                5.1 IrisLecture4.13
 - 
				
                5.2 Support Vector Machine 10 minLecture4.14
 - 
				
                5.3 Decision Tree Classifier 06 minLecture4.15
 - 
				
                6.1 Digit Classification 08 minLecture4.16
 - 
				
                6.2 K Means Clustering 13 minLecture4.17
 
 - 
				
                
 - 
	
    
Python Projects Source Code 1
- 
				
                Source Code of all 3 ProjectsLecture5.1
 
 - 
				
                
 
    This content is protected, please login and enroll course to view this content!
        