GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3131905 Date: 30/			11/2019
Subject Name: Engineering Thermodynamics Time: 02:30 PM TO 05:00 PM Instructions: Total Ma			
mstru		Attempt all questions.	
	2. 3.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Usage of steam table is permitted.	Marks
Q.1	(a (b (c	Write short note on thermodynamic equilibrium.	03 04 07
Q.2	(a (b		03 04
	(0		07
	(0	Af .	07
Q.3	(a (b	Prove that entropy is the property of system. A heat engine receives heat at the rate of 1500 kJ/min and gives an output of 8.2 kW. Determine: (i) The thermal efficiency;	03 04
9	(C	 (ii) The rate of heat rejection 300 kJ/s of heat is supplied at a constant fixed temperature of 290°C to a heat engine. The heat rejection takes place at 8.5°C. The following results were obtained: (i) 215 kJ/s are rejected. (ii) 150 kJ/s are rejected. (iii)75 kJ/s are rejected. Classify which of the result report a reversible cycle or irreversible cycle or impossible results OR	07
Q.3	(a	Define the following terms:(i) Available energy(ii) Unavailable energy	03
	(b	(iii)Dead stateState the types of irreversibility. What is their effect?	04

1

	(c)	A system at 500 K receives 7200 kJ/min from a source at 1000 K. The temperature of atmosphere is 300 K. Assuming that the temperatures of system and source remain constant during heat	07
		transfer find out:	
		(i) The entropy produced during heat transfer;(ii) The decrease in available energy after heat transfer	
Q.4	(a)	Compare Carnot and Rankine cycle.	03
۳.٠	(b)	How actual vapour cycle differs from ideal vapour cycle? Explain in	03
	(2)	detail.	•
	(c)	In a steam power cycle, the steam supply is at 15 bar and dry and	07
	` '	saturated. The condenser pressure is 0.4 bar. Calculate the Carnot	-1
		and Rankine efficiencies of the cycle. Neglect pump work.	
		OR	1
Q.4	(a)	Explain the effect of sub-cooling of liquid on performance of	03
		Vapour Compression Refrigeration system. Also show the effect on	J
	4 \	<i>p-h</i> diagram.	0.4
	(b)	Discuss with T-s diagram, the effect of superheat and condenser	04
	(a)	pressure variation on performance of Rankine cycle.	07
	(c)	An engine of 250 mm bore and 375 mm stroke works on Otto cycle. The clearance volume is 0.00263 m ³ . The initial pressure and	U/
		temperature are 1 bar and 50°C. If the maximum pressure is limited	
		to 25 bar, find the following:	
		(i) The air standard efficiency of the cycle.	
		(ii) The mean effective pressure for the cycle.	
Q.5	(a)	Draw block diagram of Vapour Compression Refrigeration system.	03
		Write down all four processes only. Also show these processes on <i>p</i> -	
		h diagram.	
	(b)	Compare Otto, Diesel and Dual cycle for same compression ratio	04
		and heat supplied. Also show comparison on <i>p-v</i> and <i>T-s</i> diagram.	
	(c)	A refrigerating system operates on the reversed Carnot cycle. The	07
		higher temperature of the refrigerant in the system is 35°C and the	
		lower temperature is -15° C. The capacity is to be 12 tonnes. Neglect all losses. Determine:	
		(i) Co-efficient of performance.	
		(ii) Heat rejected from the system per hour.	
		(iii)Power required	
		OR	
Q.5	(a)	Define the following terms related to combustion process:	03
h.	. V	(i) HCV	
- 3	√ ¬	(ii) LCV	
C		(iii)Enthalpy of formation	
	(b)	Derive an equation for air standard efficiency of Otto cycle.	04
1	(c)	Explain the minimum air requirement (Stoichiometric Air	07
1		Requirement) for complete combustion of following fuel by mass	
		and by volume: (i) Hydrogen	
		(ii) Methane	
		\ / · · · · · · · · · · · · · · · · · ·	
