GUJAKAI IECHNOLOGICAL UNIVERSITY BE - SEMESTER- III (New) EXAMINATION – WINTER 2019 Subject Code: 3130507 Date: 30/11/2019 Subject Name: Chamical Engineering Thermodynamics I			
Subje	ct C	ode: 3130507 Date: 30/11/2	019
Subje	ct N	ame: Chemical Engineering Thermodynamics I	-0
Time	:02:	30 PM TO 05:00 PM Total Marks:	70
Instruc	tions:	ttempt all questions	
	2. N	Take suitable assumptions wherever necessary.	
	3. F	igures to the right indicate full marks.	1
			Ľ
01	(9)	Write short note on "Gibb's phase rule"	03
Q.I	(a) (b)	Distinguish between intensive and extensive properties with suitable	03
	(0)	example.	
	(c)	Explain the P-V-T behavior of pure fluids with the help of neat diagram.	07
Q.2	(a)	Distinguish between state function and path function.	03
	(b)	Explain about principle of corresponding states.	04
	(C)	State first law of thermodynamics? Derive the expressions for 1° law of thermodynamics for non-flow process	07
		OR	
	(c)	Heat is transferred to 10 kg of air which is initially at 100 kPa and 300 K	07
		until its temperature reaches 600 K. Determine the change in internal	
		energy and change in enthalpy, amount of heat supplied and the work	
		done for a Constant volume process. Assume air as an ideal gas. Given	
		that: R=8.314 kJ / kmol K, Cp=29.099 kJ / kmol K, Cv =20.785 kJ / kmol	
		K and molecular weight of air $=29$	
03	(9)	State various equations of state for real gases	03
Q.5	(a) (b)	Define the following	03
	(0)	i. Sensible heat	•••
		ii. Latent heat	
		iii. Standard heat of combustion	
		iv. Standard heat of formation	. –
	(c)	Explain about Van- Der-Waals equation of state.	07
03	(a)	UR	02
Q.3	(a) (b)	Define the statements for the second law of thermodynamics	03
Ĉ	(0)	i Clausius Statement	04
	~	ii. Kelvin – Planck Statement	
\sim	(c)	Discuss effect of temperature on heat of reaction and derive necessary	07
$\langle \mathcal{N} \rangle$		equation.	
Q.4	(a)	Write a short note on Third law of thermodynamics.	03
	(D) (c)	Explain and prove Carnot's principle with past sketch	04
	(0)	OR	07
Q.4	(a)	Write a short note on Jet ejector.	03
	(b)	Using Maxwell's equation prove that :	04
		$dH = CpdT + V(1 - \beta T)dP$	
		Where β is coefficient of volume expansion	

- (c) Derive the expression for change in entropy when an ideal gas changes 07 its state from (P₁, V₁, T₁) to (P₂, V₂, T₂) for following process-1) Constant volume process.
 - 2) Constant pressure process.
 - 3) Isothermal process.
- Q.5 (a) Assuming air is mixture of 21 % oxygen and 79% nitrogen by volume 03 calculate entropy of 1 kmol air relative to pure oxygen and nitrogen, all at the same temperature and pressure.
 - (b) Discuss briefly about single and multistage compressors.
 - (c) What is the criterion of exactness? Using the criterion of exactness derive 07 the Maxwell equation.

OR

- **Q.5** (a) Discuss any three major desirable properties of good refrigerant.
 - (b) Write a short note on Thermodynamic Diagrams.
 - (c) A refrigeration machine operating at a condenser temperature at 290 K 07 needs 1 kW of power per ton of refrigeration.
 Determine:
 - 1) Coefficient Of Performance(COP)
 - 2) Heat rejected to the condenser
 - 3) The lowest temperature that can be maintained.
 - Given that: 1 Ton of refrigeration = 12660 kJ/h=3516.67 W

04

03

04