GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-I &II (NEW) EXAMINATION - SUMMER-2019

Subject Code: 3110015 Date: 01/06/2019

Subject Name: Mathematics –2

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

- Q.1 (a) Find the Fourier integral representation of $f(x) = \begin{cases} x \ ; x \in (0, a) \\ 0 \ ; x \in (a, \infty) \end{cases}$
 - (b) Define: Unit step function. Use it to find the Laplace transform of $f(t) = \begin{cases} (t-1)^2 \; ; \; t \in (0,1] \\ 1 \; ; \; t \in (1,\infty) \end{cases}$
 - (c) Use the method of undetermined coefficients to solve the differential equation $y'' 2y' + y = x^2 e^x$.
- Q.2 (a) Evaluate $\oint_C \bar{F} \cdot d\bar{r}$; where $\bar{F} = (x^2 y^2)\hat{i} + 2xy\hat{j}$ and C is the curve given by the parametric equation $C: r(t) = t^2 \hat{i} + t \hat{j}$; $0 \le t \le 2$.
 - (b) Apply Green's theorem to find the outward flux of a vector field $\overline{F} = \frac{1}{xy}(x \hat{\imath} + y \hat{\jmath})$ across the curve bounded by $y = \sqrt{x}$, 2y = 1 and x = 1.
 - (c) Integrate $f(x, y, z) = x yz^2$ over the curve $C = C_1 + C_2$, where C_I is the line segment joining (0,0,1) to (1,1,0) and C_2 is the curve $y=x^2$ joining (1,1,0) to (2,4,0).

OR

- (c) Check whether the vector field $\bar{F} = e^{y+2z} \hat{\imath} + x e^{y+2z} \hat{\jmath} + 2x e^{y+2z} \hat{k}$ is conservative or not. If yes, find the scalar potential function $\varphi(x, y, z)$ such that $\bar{F} = \operatorname{grad} \varphi$.
- Q.3 (a) Write a necessary and sufficient condition for the differential equation M(x,y)dx + N(x,y)dy = 0 to be exact differential equation. Hence check whether the differential equation $[(x+1)e^x e^y]dx xe^y dy = 0$ is exact or not.
 - (b) Solve the differential equation $(1+y^2)dx = (e^{-\tan^{-1}y} x)dy$
 - (c) By using Laplace transform solve a system of differential equations $\frac{dx}{dt} = 1 y$, $\frac{dy}{dt} = -x$, where x(0) = 1, y(0) = 0.

OR

Q.3 (a) Solve the differential equation $(2x^3 + 4y)dx - xdy = 0.$

	(b)	dy = 2y + y = 2y	04
	(b)	Solve: $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$.	
	(c)	By using Laplace transform solve a differential equation $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y =$	07
		e^{-t} , where $y(0) = 0$, $y'(0) = -1$.	
Q.4	(a)	Find the general solution of the differential equation	03
		$e^{-y}\frac{dy}{dx} + \frac{e^{-y}}{x} = \frac{1}{x^2}$	
	(b)	Solve: $\frac{d^3y}{dx^3} - 7\frac{dy}{dx} + 6y = e^x$	04
	(c)	Find a power series solution of the differential equation $y'' - xy = 0$ near	07
	(-)	an ordinary point $x=0$.	
0.4	()	OR	0.2
Q.4	(a)	Find the general solution of the differential equation $\frac{dy}{dy} + \frac{y}{dy} = \frac{1}{\sqrt{2\pi}} = 0$	03
	(b)	$\frac{dy}{dx} + \frac{y}{x} - \sqrt{y} = 0.$	04
	(b)	Solve: $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = x$	
	(c)	Find a Frobenius series solution of the differential equation $2x^2y'' + xy' - (x + 1)x = 0$, near a regular singular point $y = 0$	07
		(x + 1)y = 0 near a regular-singular point $x=0$.	
Q.5	(a)	Write Legendre's polynomial $P_n(x)$ of degree-n and hence obtain $P_1(x)$	03
	(b)	and $P_2(x)$ in powers of x. Classify ordinary points, singular points, regular-singular points and	04
	(,-)	irregular-singular points (if exist) of the differential equation $y'' + xy' =$	-
		0.	0=
	(c)	Solve the differential equation $\frac{d^2y}{dt^2} = \frac{dy}{dt} = \frac{dy}{dt} = \frac{dy}{dt}$	07
		$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^3 \cos x$	
		by using the method of variation of parameters. OR	
Q.5	(a)	Write Bessel's function $J_p(x)$ of the first kind of order-p and hence show	03
		that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.	
			0.4
	(b)	Classify ordinary points, singular points, regular-singular points and irregular-singular points (if exist) of the differential equation $xy'' + y' =$	04
		xy + y = 0.	
	(c)	Solve the differential equation $y'' + 25y = \sec 5x$	07
		by using the method of variation of parameters.	
