Seat No.:	Enrolment No.
3Cat 110	Lindincht 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- I & II (NEW) EXAMINATION - WINTER 2019

Subject Code: 3110018 Date: 02/01/2020

Subject Name: Physics

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			Mark
Q.1	(a)	Enlist the assumptions of free electron theory.	03
	(b)	Give the difference between Direct and Indirect band gap.	04
	(c)	Explain forward and reverse bias conditions in PN junction diode.	07
Q.2	(a)	Define Intrinsic and extrinsic semiconductor.	03
	(b)	The thermal and electrical conductivity of Cu at 20° C are 390 Wm ⁻¹ K ⁻¹ and $5.87 \times 10^{7} (\Omega \text{m})^{-1}$ respectively. Calculate the Lorentz number.	04
	(c)	Explain Schottky diode in detail.	07
		OR	
	(c)	Explain the dependence of Fermi level on temperature	07
Q.3	(a)	Explain Drude model	03
	(b)	Fermi energy of a given substance is 7.9 eV. What is the average energy and speed of electron in this substance at 0 K?	04
	(c)	Explain photovoltaic effect. With required diagrams discuss construction and working of solar cell.	07
		OR	
Q.3	(a)	Write a short note on exciton.	03
	(b)	Consider two-dimensional square lattice of side 3.0 Å. At what electron	04
		momentum values do the sides of first Brillouin zone appear? What is the	
		energy of free electron with this momentum?	
	(c)	Derive an equation of joint density of states.	07
Q.4	(a)	Define Hall effect. Give its physical significance.	03
۷.,	(b)	2.0Cm wide and 1.0 mm thick copper strip is placed in a magnetic field	04
	()	1.5Wb/m ² perpendicular to the strip. Suppose a current of 200A is set up	
	- 1	in the strip what will be the Hall potential appeared across the strip?	
	40	$(n=8.4 \times 10^{28} \text{ electrons /m}^3).$	
	(c)	Discuss UV-VIS method for band gap measurement of semiconductor.	07
1	3	OR	
Q.4	(a)	<u>e</u>	03
1,	(b)	The transmitted intensity is 0.4 times intensity of incident light. If this	04
7		light is incident on a semiconductor having a thickness of 0.5cm then	
		find absorption coefficient.	
	(c)	Explain four probe method. Derive an equation to calculate resistivity of a thin sample	07

Q.5	(a) (b)	Write short note cryotron. Explain London's penetration depth.	03 04
	(c)	Give the difference between type 1 and type 2 superconductor. OR	07
Q.5		Write short note on SQUID.	03
	(b)	Calculate the critical current for a superconducting wire of lead having a diameter of 2 mm at 2 K. Critical temperature for lead is 4 K and Hc (0)	04
	(c)	= 6.5 X 10 ⁴ A/m. Explain the properties of superconductors in detail.	07
	,),

		SIRORRENT	
		~O,	
4	C	2	
1	γ :		
	,		
			2