UNIVERSITY OF MUMBAI No. UG/ 41 of 2018-19

CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/179 of 2017-18, dated 8th August, 2017 relating to syllabus of the Bachelor of Engineering (B.E.) degree course.

They are hereby informed that the recommendations made by the Board of Studies in Electrical Engineering at its meeting held on 9th April, 2018 have been accepted by the Academic Council at its meeting held on 5th May, 2018 vide item No. 4.52 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T.E. & B.E. in Electrical Engineering (Sem - V to VIII) has been brought into force with effect from the academic year 2018-19 and 2019-2020, accordingly. (The same is available on the University's website www.mu.ac.in).

MUMBAI - 400 032 25h June, 2018

(Dr. Dinesh Kamble) I/c REGISTRAR

Mulling

To

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C/4.52/05/05/2018

No. UG/ 41 -A of 2018

MUMBAI-400 032 25th June, 2018

Copy forwarded with Compliments for information to:-

1) The I/c Dean, Faculty of Science & Technology,

2) The Chairman, Board of Studies in Electrical Engineering,

3) The Director, Board of Examinations and Evaluation,

4) The Director, Board of Students Development,

5) The Co-Ordinator, University Computerization Centre,

(Dr. Dinesh Kamble) I/c REGISTRAR

um amb

Program Structure for TE Electrical Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester V

Course Code	Course Name		Teaching Schem (Contact Hours	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EEC501	Power System - II	4	-	1	4	-	1	5	
EEC502	Electrical Machines - III	4	-		4	-	-	4	
EEC503	Control System - I	4	-		4	-	-	4	
EEC504	Power Electronics	4	-	-	4	-	-	4	
EEDLO501X	Department Level Optional Course-I	3		1	3	-	1	4	
EEL501	Business Communication and Ethics	-	4**	-	-	2	-	2	
EEL502	Control System Lab	-	2	-	-	1	-	1	
EEL503	Electrical Machines Lab - III	4	2	-	-	1	-	1	
EEL504	Power Electronics Lab		2	-	-	1	-	1	
	Total	19	10	2	19	5	2	26	

^{**} Out of four hours, 2 hours theory shall be taught to entire class and 2 hours practical in batches

Examination Scheme for Semester V

		Examination Scheme												
			The	eory					_					
Course Code	Course Name	External (UA)		Internal (CA)		Term Work		Practical		Oral		Pract./Oral		Total
		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC501	Power System - II	80	32	20	8	25	10	<u>.</u>	-	-	-	-	-	125
EEC502	Electrical Machines - III	80	32	20	8	-	4	-	-	-	-	-	-	100
EEC503	Control System - I	80	32	20	8	- (2	-	_	-	-	_	-	100
EEC504	Power Electronics	80	32	20	8		-	-	-	-	-	-	-	100
EEDLO 501X	Department Level Optional Course-I	80	32	20	8	25	10	-	-	-	-	-	-	125
EEL501	Business Communication and Ethics	-	-	4		50	20	-	-	-	-	-	-	50
EEL502	Control System Lab	-	- 1	- 7	_	25	10	-	-	25	10	-	-	50
EEL503	Electrical Machines Lab - III	-	.6		-	25	10	-	-	-	-	25	10	50
EEL504	Power Electronics Lab	- 1	0	-	-	25	10	-	-	-	-	25	10	50
	Total			100	-	175	-	-	-	25	-	50	-	750

Program Structure for TE Electrical Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester VI

Course Code	Course Name		eaching Sche Contact Hou		Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EEC601	Protection and Switchgear Engineering	3	-	- 0	3	-	-	3	
EEC602	Electrical Machines - IV	4	-	6	4	-	-	4	
EEC603	Signal processing	3	-	1	3	-	1	4	
EEC604	Microcontroller and its Applications	4		-	4	-	-	4	
EEC605	Control System - II	4		-	4	-	-	4	
EEDLO602X	Department Level Optional Course-II	3		1	3	-	1	4	
EEL601	Electrical Protection Lab	4.	2	-	-	1	-	1	
EEL602	Electrical Machines Lab - IV		2	-	-	1	-	1	
EEL603	Microcontroller Lab	7	2	-	-	1	-	1	
EEL604	Simulation Lab – II	-	2	-	-	1	-	1	
	Total	21	8	2	21	4	2	27	

Examination Scheme for Semester VI

						E	xaminati	ion Sche	eme					
			The	eory										
Course	Course Name	External (UA)		Internal (CA)		Term Work		Practical		Oral		Pract./Oral		- Total
Code		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC601	Protection and Switchgear Engineering	80	32	20	8	-		-	-	-	-	-	-	100
EEC602	Electrical Machines - IV	80	32	20	8		<u> </u>	-	-	-	-	-	-	100
EEC603	Signal processing	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC604	Microcontroller and its Applications	80	32	20	80	-	-	-	-	-	-	-	-	100
EEC605	Control System - II	80	32	20	8	-	-	-	-	-	-	-	-	100
EEDLO602 X	Department Level Optional Course-II	80	32	20	8	25	10	-	-	-	-	-	-	125
EEL601	Electrical Protection Lab	-	7	-	-	25	10	-	-	25	10	-	-	50
EEL602	Electrical Machines Lab - IV	-		-	-	25	10	-	-	-	-	25	10	50
EEL603	Microcontroller Lab		-	-	-	25	10	-	-	-	-	25	10	50
EEL604	Simulation Lab – II	\ - *	-	-	-	25	10	-	-	25	10	-	-	50
	Total 480 - 120 - 150 50 - 50 -									850				

List of Department Level Optional Courses

Course Code	Department Level Optional Course - I
EEDLO5011	Communication Engineering
EEDLO5012	Renewable Energy and Energy Storage
EEDLO5013	Utilization of Electrical Energy

Course Code	Department Level Optional Course - II
EEDLO6021	Digital Communication Engineering
EEDLO6022	Micro-grid
EEDLO6023	Advanced Power Electronics

	University of Mumbai									
Course Code	Course Name		g Scheme t Hours)	Credits Assigned						
Code		Theory	Tutorial	Theory	Tutorial	Total				
EEC501	Power System-II (abbreviated as PS-II)	4	1	4	1	5				

		Examination Scheme						
Course	Course Name							
code		Interna	al Assess	ment	End	Exam	Term	Total
code		Tost 1	Tost 2	A ***	Sem.	Duration	Work	Total
		Test 1	Test 2	Avg.	Exam	(Hrs.)	•	
EEC501	Power System –II	20	20	20	80	03	25	125

Course	To impart knowledge on transmission line operation during fault.							
Objectives	 To study power system transients and insulation co-ordination. 							
	Student will be able							
	 To understand different kind of faults on transmission line. 							
Comman	To analyse symmetrical fault							
Course Outcomes	 To analyse symmetrical components and unsymmetrical faults. 							
Outcomes	 To illustrate and analyse power system transients 							
	 To understand insulation co-ordination in power system. 							
	 To understand and analyse corona on transmission line. 							

Module	Contents	Hours
1	Symmetrical Fault Analysis:	14
	Introduction to synchronous machine, basic construction, operation and	
	equivalent circuit diagram, short circuit of synchronous machine: no	
	load and loaded machine, transient on a transmission line, selection of	
	Circuit breaker, short circuit MVA, algorithm for SC studies, Z Bus	
	formulation, symmetrical fault analysis using Z bus (numerical on Z	
	bus formulation up to 3x3 matrix).	
2	Symmetrical Components:	07
	Introduction, Symmetrical component transformation, phase shift in	
	star-delta transformers, sequence impedances and sequence network of	
	transmission line, synchronous machine and transformer, power	
1700	invariance, construction of sequence network of a power system.	
3	Unsymmetrical Fault Analysis:	07
	Types of unsymmetrical faults, Analysis of shunt type unsymmetrical	
	faults: single line to ground (SLG) fault, line to line (L-L) fault, double	
· ·	line to ground (LLG) fault, bus impedance matrix method for analysis of	
	shunt type unsymmetrical faults. Analysis of series type unsymmetrical	
	faults: one open conductor faults, two open conductor fault.	
4	Power System Transients:	12
	Review of transients in simple circuits, recovery transient due to	
	removal of short circuit, arcing grounds, capacitance switching, current	

		1
	chopping phenomenon.	
	Travelling waves on transmission lines, wave equation, reflection and	
	refraction of waves, typical cases of line terminations, attenuation,	
	Bewely lattice diagram.	
	Lightning phenomenon, mechanism of Lightning stroke, shape of	
	Lightning voltage wave, over voltages due to Lightning, Lightning	
	protection problem, significance of tower footing resistance in relation	
	to Lightning, insulator flashover and withstand voltages, protection	-
	against surges, surge arresters, surge capacitor, surge reactor and surge	40
	absorber, Lightning arrestors and protective characteristics, dynamic	
	voltage rise and arrester rating.	
5	Insulation Coordination:	03
	Volt time curve, basic approach to insulation co-ordination in power	
	system, over voltage protection, ground wires, insulation coordination	
	based on lightning, surge protection of rotating machines and	
	transformers.	
6	Corona:	05
	Phenomenon of corona, Disruptive critical voltage, Visual critical	
	voltage, corona loss, factors affecting corona loss, Radio interference	
	due to corona, practical considerations of corona loss, corona in bundled	
	conductor lines, corona ring, corona pulses- their generation and	
	properties in EHV lines, charge voltage (q-v) diagram and corona loss.	

Text Books:

- 1. Wadhwa C.L. Electrical power system, New Age International,4th edition,2005
- 2. HadiSaadat, Power System Analysis, TMH publications, 2002
- 3. D. P. Kothari, I. J. Nagrath, Modern *Power System Analysis*,McGraw Hill,3rd edition,2006
- 4. B.R. Gupta, *Power System Analysis And Design*, S.Chand, 4th edition, 2007
- 5. Begamudre R.D. "Extra High Voltage AC Transmission Engineering", New Age International, 2nd edition
- 6. Soni M.L., Bhatanagar U.S, Gupta P.V, A course in electrical power, DhnapatRai sons
- 7. Timothy J.E.Miller, "Reactive Power Control in Electric Systems" Wiley India Pvt Ltd. 2010.
- 8. J.B.Gupta, "Course in power system" kataria Publication

Reference Books:

- 1. Stevenson, *Modern power system analysis*, TMH publication
- 2. TuranGonen, Modern power system analysis, Wiley,1988
- 3. Mehta V.K., *Principle of power system*, S Chand, 4th edition, 2005.
- 4. Arthur R. Bergen, Vijay Vittal, "Power System Analysis", Pearson Publication, Second Edition.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks
Assignments :05 marks
Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

	University of Mumbai										
Course Code	Course Name		g Scheme t Hours)	Credits Assigned							
		Theory	Tutorial	Theory	Tutorial	Total					
EEC502	Electrical Machines -III (abbreviated as EMC- III)	4	-	4		4					

		Examination Scheme						
Course								
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
code		Test 1	Test 2	Avia	Sem.	Duration	Work	Total
		1 est 1	Test 2	Avg.	Exam	(Hrs.)		
EEC502	Electrical Machines –III	20	20	20	80	03		100

Course	• To impart knowledge on performance and operation of an induction
Objectives	motor.
Objectives	 To study design aspects of an induction motor.
	Student will be able
	 To illustrate the working principle of three phase induction motor
	• To analyse and evaluate performance of three phase induction motors
Comman	under various operating conditions
Course Outcomes	• To illustrate various speed control and starting methods of three phase
Outcomes	induction motor.
	 To illustrate the working principle of single phase induction motor
	 To analyse the performance of single phase induction motor.
	 To design three phase induction motor

Module	Contents	Hours					
1	Three Phase Induction Motors: Introduction, Construction, Principle	12					
	of operation, Rotor emf & frequency, Current and Power, Power						
	stages, phasor diagram, Analysis of Equivalent circuit, Torque-speed characteristics in braking, motoring and generating regions. Effect of voltage and frequency variations on Induction motor performance,						
	Losses and efficiency, No load and block rotor test, Circle diagram,						
	Applications of 3Φ IM, Relevant standards						
2	Three Phase Induction Motors: Speed Control and Starting: Speed	06					
	control methods including V/f method (excluding Slip power recovery						
	scheme), Starting methods, High torque motors, Cogging and crawling.						
3	Single phase Induction Motor: Introduction, Principle of operation,	04					
	Double field revolving theory, Equivalent circuit of single phase						
7	induction motor, Determination of equivalent circuit parameters from						
	no load and blocked rotor test.						
4	Types of Single phase Induction Motor & its Applications: Staring	04					
	methods, Split phase starting- Resistance spilt phase, capacitor split						
	phase, capacitor start and run, shaded pole starting, Reluctance starting.						
	Applications.						
5	Design of Three phase Induction motors: Output equation, Choice of	12					

	specific electric and magnetic loadings, Standard frames, Main	
	dimensions, Design of stator and rotor windings, Stator and rotor	
	slots, Design of stator core, air gap, Design of squirrel cage rotor, end	
	rings, Design of wound rotor.	
		1.0
6	Performance Measurement of Three Phase Induction Motors:	10
6	Performance Measurement of Three Phase Induction Motors: Calculation of leakage reactance for parallel sided slot, Carter"s	10
6		

Text Books:

- 1. Bimbhra P.S., Electric Machinery, Khanna Publisher,
- 2. Bimbhra P.S., Generalized Machine Theory, Khanna Publisher,
- 3. V. K. Mehta, Principles of Electrical Machines, S Chand Publication
- 4. A.K. Sawhney, "Electrical Machine Design", Dhanpat Rai & Co
- 5. M.V.Deshpande, "Design and Testing of Electrical Machines", PHI Learning

Reference Books:

- 1.M.G. Say, Performance and design of alternating current machines, CBS Pub.
- 2. Ashfaq Husain, Electric Machines, Dhanpat Rai and co. publications
- 3.A.E. Fitzgerald, Kingsly, Stephen., Electric Machinery, Tata McGraw Hill
- 4.K.G. Upadhyay, "Design of Electrical Machines", New age publication

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai						
Code	Course Name		g Scheme t Hours)	Credits Assigned		
Code		Theory	Tutorial	Theory	Tutorial	Total
EEC503	Control System -I (abbreviated as CS-I)	4	-	4	-	4

		Exa	mination	Scheme				
Course				Theor	y			
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
Code		Tost 1	Tost 2	Avia	Sem.	Duration	Work	Total
		Test 1	Test 2	Avg.	Exam	(Hrs.)	•	
EEC503	Control System –I	20	20	20	80	03	8.77	100

Course	• To impart knowledge on control system and modeling of system and its				
Objectives	analysis.				
	Student will be able				
	• To model electrical and electromechanical system using transfer				
	function.				
Course	 To Illustrate methodology for simplification of system 				
Outcomes	 To model and analyse given system in state space 				
	To analyse steady state condition of given system				
	 To analyse the transient and stability conditions of physical system 				

	Module	Contents	Hours
	1	Introduction to control system	02
		Introduction, open loop and closed loop control system with examples,	
		brief idea of multi variable control system.	
	2	Mathematical Model of Physical System	10
		Transfer function of electrical, mechanical (translational and rotational)	
		and electro mechanical systems. Transfer function model of AC & DC	
		servomotor, potentiometer & tacho-generator. Block diagram reduction	
		technique and signal flow graph, Mason's rule, Signal flow graph of	
		electrical network. Conversion of BDR to SFGand vice versa.	
-	3	Time domain Analysis	10
		Time response analysis of first and second order systems, Under	
		damped second order system with step input. System response with	
		additional poles and zeros. Steady state error for unity feedback	
	Since the	systems. Static error constants and system type. Concept of stability,	
		absolute and relative stability using Routh Hurwitz criteria,	
-	4	State Variable Analysis	10
	11/1/3	Introduction to state variable, General state space representation, State	
		space representation of Electrical and Mechanical systems. Conversion	
		between state space and transfer function. Alternative representations	
		in state space: (Phase variable, canonical, parallel & cascade).	
		Similarity transformations, diagonalizing a system matrix. Laplace	
		Transform solution of state equation, stability in state space	
	5	Root locus techniques	05
		Definition and properties of root locus, rules for plotting root locus,	

	stability analysis using root locus, Transient response design via gain adjustment.	
6	Frequency Domain Analysis	11
	Polar plots, Bode plot, stability in frequency domain, Nyquist plots.	
	Nyquist stability criterion. Gain margin and phase margin via Nyquist	
	diagram and Bode plots. Relationship between Closed loop transient,	
	Closed and open loop frequency responses. Steady state error	
	characteristics from frequency responses.	

Text Books:

- 1. Control system engineering by Norman Nise 2nd to latest edition
- 2. Control System engineering by Nagrath and Gopal, 5th to latest edition, Wiley Eastern
- 3. Modern control system engineering by K. Ogata, printice Hal
- 4. Modern control Systems, Twelfth edition, by Richard C Dorf, Robert H Bishop, Pearson.

Reference Books:

- 1. Linear Control system Analysis and design with MATLAB, by J.J. Azzo, C. H. Houpis, S.N. Sheldon, Marcel Dekkar, ISBN 0824740386
- 2. Feedback control of Dynamic System, G.F. Franklin, Pearson higher education, ISBN 0130980412
- 3. Control System Engineering, Shivanagraju s. Devi L., New age International latest edition.
- 4. Control Systems Technology, Curtis Johnson, Heidar Malki, Pearson
- 5. Control Systems Engineering, S. K. Bhattacharya, Pearson.
- 6. Control Systems, Theory and applications, Smarajit Ghosh, Pearson

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai						
Course Code	Course Name	Teaching Scheme (Contact Hours)		Credits Assigned		
Code		Theory	Tutorial	Theory	Tutorial	Total
EEC504	Power Electronics (abbreviated as PE)	4	-	4	-	4

	Examination Scheme							
Course				Theor	У			-
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
Code		Test 1	Tost 2	A ***	Sem.	Duration	Work	Total
		1 est 1	Test 2	Avg.	Exam	(Hrs.)	•	
EEC504	Power Electronics	20	20	02	80	03	8.77	100

	• To impart knowledge about various power semiconductor devices related to its characteristics, ratings, protection and to select semiconductor
	devices for various applications.
Course	• To introduce different methods of power conversion such as ac to dc, dc to
Objectives	dc, dc to ac the underlying principles of converter operation and hence to
	analyze different converter circuits for power conversion.
	• To keep abreast with the latest technologies and research going on in
	different areas related to power electronics.
	Student will be able to
	• Select and design power electronic converter topologies for a broad range
	of energy conversion applications.
	• Analyse and simulate the performance of power electronic conversion
	systems.
Course	• Analyse various single phase and three phase power converter circuits and
Outcomes	understand their applications.
Outcomes	• Apply the basic concepts of power electronics to design the circuits in the
	fields of AC and DC drives, power generation and transmission and energy
	conversion, industrial applications.
	• Identify and describe various auxiliary circuits and requirements in power
	electronics applications such as Gate driver circuit, and snubber circuits
	along with electrical isolation and heat sinks

Module	Contents	Hours				
	Thyristors: Basic operation of silicon controlled rectifier, two	04				
1/2 4	transistor analogy, Static and Dynamic characteristics, Gate					
	characteristics, Firing circuits, Commutation circuits, Protection circuit					
	of SCR, Basic operation and characteristic of Triac, GTO, Diac.					
2	Power semiconductor devices: Basic operation and characteristics of					
	power diodes, power BJTs, power MOSFETs, IGBTs, Silicon Carbide					
	(SiC)and GaN devices, Safe Operation Area (SOA) for each devices.					
	Comparison of devices, selection of devices for various applications,					
	conduction and switching losses; Gate Drive Circuitry for Power					
	Converters and snubber circuits, heat sinks.					
3	Controlled Rectifiers: Single phase half wave rectifiers, full wave	08				
	rectifiers (mid-point and bridge configuration) for R and R-L load,					

	freewheel diode, harmonic analysis of input current and input power factor for single phase fully controlled rectifier, effect of source inductance (concept only), single phase dual converter, Three phase semi converter and full converter with R load, Applications, Numerical for calculation of output voltage, single phase PWM rectifier, basic working principle and applications.	
4	Inverter: Principle of operation, Performance parameters, Single	06
	phase voltage source bridge Inverters, Three phase VSI (120° and 180°	4
	conduction mode), control of inverter output voltage , PWM	-
	techniques-Single PWM, Multiple PWM, Sinusoidal PWM,	- 40
	Introduction to Space vector modulation, Current source inverters,	
	comparison of VSI and CSI, Applications.	
5	DC to DC Converter: Basic principle of dc to dc conversion,	08
	switching mode regulators – Buck, Boost, Buck-Boost, Cuk regulators,	7
	bidirectional dc to dc converters, all with resistive load and only CCM	
	mode, Applications: Power Factor Correction Circuits, LED lamp	
	driver, Numerical included.	
6	AC voltage controllers: On-Off and phase control, Single phase AC	10
	voltage controllers with R and RL loads. Cyclo converters, Matrix	
	converter: Basic working principle.	

Text Books:

- 1. "Power Electronics" M.H.Rashid, Prentice-Hall of India
- 2. "Power Electronics", Ned Mohan, Undeland, Robbins, John Wiley Publication
- 3. "Power Electronics", P.C Sen, Tata McGrawhill
- 4. "Power Electronics: Devices, Circuits and Matlab Simulations" by Alok Jain, Penram International
- 5. "Power Electronics", V.R Moorthi, Oxford University press
- 6. "Thyristors & their applications", Ramamurthy
- 7. "Power Electronics", M.D Singh and Khanchandani, Tata McGrawhill
- 8. "Silicon Carbide Power Devices" B. Jayant Baliga

Reference Books:

- 1. "Power Electronics", Landers, McGraw Hill
- 2. "Power Electronics", P.S Bhimbra, Khanna Publishers
- 3. "Elements of power electronics" Philip T Krein, Oxford University Press
- 4. "Power Electronics for Technology", Ashfaq Ahmed, Pearson
- 5. "Power Electronics", Joseph Vithayathil, Tata McGrawhill
- 6. "Silicon Carbide, Volume 2: Power Devices and Sensors," Peter Friedrichs, Tsunenobu Kimoto, Lothar Ley and Gerhard Pensl, Wiley Publications
- 7. "Power Electronics Converters and Regulators," Dokić, Branko L. and Blanuša, Branko

Website Reference:

1. http://nptel.iitm.ac.in: 'Power Electronics' web-course

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course	Course Name		g Scheme et Hours)	Credits Assigned				
Code		Theory	Tutorial	Theory	Tutorial	Total		
EEDLO 5011	Communication Engineering (abbreviated as CE)	3	1	3	1	4		

		Examination Scheme						
Course		Theory						
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
Code		Test 1	Test 2	Avia	Sem.	Duration	Work	Total
		1 est 1	Test 2	Avg.	Exam	(Hrs.)		
EEDLO 5011	Communication Engineering	20	20	20	80	03	25	125

Course	• To impart knowledge on various modulation techniques in communication
	engineering.
Objectives	 To study different sampling techniques used in communication engineering.
	Student will be able
	• To understand basic communication system and its components.
	• To illustrate and analyse amplitude modulation and demodulation
	techniques.
Course	• To illustrate and analyse phase modulation and demodulation techniques.
Outcomes	• To illustrate and analyse frequency modulation and demodulation
	techniques.
	• To illustrate and analyse pulse modulation and demodulation techniques.
	 To understand and analyse radio receivers and sampling techniques.

Module	Contents	Hours
1	Basics of Communication System	04
	Types of signals, Block diagram, electromagnetic spectrum, signal	
	bandwidth and power, types of communication channels, types of noise,	
	signal to noise ratio, noise figure, and noise temperature	
2	Amplitude Modulation and Demodulation	08
	Basic concept, signal representation, need for modulation, Spectrum,	
	waveforms, modulation index, bandwidth, voltage distribution, and	
	power calculation	
	DSBFC : Principles, modulating circuits, low level and high level	
	transmitters	
	DSB suppressed carrier: Multiplier modulator, nonlinear modulator,	
	and switching Modulator,	
	Single Side Band (SSB):-Principle, filter method, phase shift method	
	and third method, independent sideband (ISB) and Vestigial Side Band	
	(VSB) principles and transmitters	
	Amplitude demodulation: Diode detector, practical diode detector, and	
	square law Detector.	
3	Angle Modulation and Demodulation	08
	Frequency Modulation (FM): Basic concept, mathematical analysis,	

	-	
	frequency spectrum of FM wave, sensitivity, phase deviation and modulation index, frequency deviation and percent modulated waves,	
	bandwidth requirement of angle modulated waves, deviation ratio,	
	narrow band FM, and wide band FM. Varactor diode modulator, FET	
	reactance modulator. Direct FM transmitter, indirect FM Transmitter,	
	noise triangle in FM, pre-emphasis and de-emphasis.	
	Phase Modulation (PM): Principle and working of transistor direct PM	
	modulator, relationship and comparison between FM and PM.	
	FM demodulation: Balance slope detector, Foster-Seely discriminator,	
	ratio detector, comparison between FM demodulators, comparison	40
	between AM, FM and PM. Applications of FM and PM	
4	Radio Receivers	06
	TRF, Super-heterodyne receiver, receiver parameters, and choice of IF.	
	AM receiver circuits and analysis, simple AGC, delayed AGC, forward	
	AGC, and communication receiver, FM receiver circuits, comparison	
	with AM receiver	
5	Pulse Modulation and Demodulation	06
	PAM, PWM, PPM waveform generation and detection, principle,	
	generation and detection of delta modulation and adaptive delta	
	modulation. Applications of pulse communication	
6	Sampling Techniques	04
	Theorem for low pass and band pass signals, proof with spectrum,	
	Nyquist criteria, sampling techniques, aliasing error and aperture effect	

Text Books:

- 1. Tomasi W., "Advanced Electronics Communication systems", PGI, 4th Edition1998
- 2. Taub & Schiling, "Principles of Communication Systems", McGraw Hill, 2nd Ed. 1987
- 3. John C. proakis, "Digital Communication", McGraw Hill International, 1995
- 4. Haykin S, John Wiley & Sons, "Digital Communication", 3rd Ed. 1995

Reference Books:

- 1. Lathi B.P., "Modern Digital and Analog Communication System, Oxford University Press, 3rd Edition 1998
- 2. Dennis Roddy and John Coolen, "Electronic Communications", Prentice Hall of India, 3rd Ed. 1992

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks
Assignments :05 marks
Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course	Course Name	1	g Scheme et Hours)	Credits Assigned				
Code		Theory	Tutorial	Theory	Tutorial	Total		
EEDLO 5012	Renewable Energy and Energy Storage (abbreviated as REES)	3	1	3	1	4		

		Examination Scheme						
Course		Theory						
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
Code		Test 1	Test 2	Avia	Sem.	Duration	Work	10tai
		1 est 1	Test 2	Avg.	Exam	(Hrs.)		
EEDLO 5012	Renewable Energy and Energy Storage	20	20	20	80	03	25	125

Course	• To introduce the new paradigm of power generation in the form of renewable energy and the various means used for power processing and optimization.
Objectives	• To relate and study the various energy storage technology and their significance in the context of renewable energy based applications.
Course Outcomes	 Student will be able to Identify and describe the issues related to use of fossil fuels and to recognize means of mitigation through adaption of renewable energy (RE). Identify and analyze the process of power generation through solar thermal and solar photovoltaic technologies. Identify and describe the various components and types of Wind Energy system Fuel cell technology, tidal, wave, and biomass systems. Identify and describe the importance of various forms of energy storage (ES) in new power generation scenario based on renewable energy. Analyze, formulate and propose the power sharing mechanisms and to evaluate the fault scenarios in hybrid RE and ES sources. Recognize the need to adapt and engage in operations RE/ES related
	activities for sustainable future.

Module	Contents	Hours
1	Introduction- World's and India's production and reserves of	03
	commercial energy sources, energy alternatives, review of conventional	
4	and non conventional energy sources. Statistic of net potential and	
	current generation status of different energy alternatives. Distributed	
	generation, Future trends in power generation and distribution.	
2	Solar Energy- Solar Thermal applications-Review of solar thermal	12
	applications-solar thermal conversion devices and storage applications.	
- "	Solar Photovoltaic- solar cell: characteristics, losses, model of a solar	
	cell, emerging solar cell technologies; Solar PV modules, mismatch in	
	module, hot spots, bypass diode; PV module: I-V and power curve,	
	effect of variation in temperature and solar radiations; MPPT, types,	
	different algorithms for electrical MPPT. distributed MPPT, MPPT	
	converters.	
	Types of PV systems: standalone, grid connected systems; BOS of PV	

	system, Battery charge controllers, Power Conditioning Unit, Solar PV	
	Micro-inverters	
	Solar Plant design: mounting of PV panels supporting structures,	
	Calculation and Design methodology of standalone PV system and grid	
	connected system	
	Review of regulatory standards for solar PV installations, net-metering.	
3	Wind Energy Review of wind energy system and its components, types	04
	of wind turbines, characteristics; Power generation and control in wind	
	energy systems, performance calculations of wind energy systems.	
	Topologies of WES, WES with rectifier / inverter system, Power	40
	Converters for Doubly Fed Induction Generators (DFIG) in Wind	
	Turbines.	
4	Fuel Cell- Review of fuel cells and their principle of operation, Review	03
	of types of fuel cell and their performance comparison. Topologies of	
	fuel cell power systems, applications.	
5	Other Sources- Review of other nonconventional sources, their features	04
	and applications; Biomass, Tidal, Ocean Thermal Electric Conversion,	
	geothermal, and Micro-hydro.	
6	Energy Storage	10
	Forms of energy storage, importance of storage system in new power	
	generation scenario; Types, characteristics and performance evaluation	
	of: batteries, ultra-capacitors, flywheels, SME, pumped hydro storage	
	system; Applications of Energy storage in distributed generation, smart	
	grid systems, Electric and Hybrid electric vehicles. Hybrid power	
	system based on renewable energy and energy storage.	

Reference Books:

- 1. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable Energy in Electric Power Systems", Wiley
- 2. Green M.A "Solar Cells": Operating Principles, technology and System Applications, Prentice Hall Inc, Englewood Cliffs N.J, U.S.A, 1982
- 3. James Larminie, Andrew Dicles "Fuel Cell Systems Explained," Wiley publication
- 4. Chetan Singh Solanki, Solar Photo Voltaics, PHI Learning Pvt Ltd., New Delhi, 2009
- 5. Hashem Nehrir and Caisheng Wang, Modeling and control of fuel cells: Distributed Generation Applications, IEEE Press, 2009
- 6. J.F. Manwell and J.G. McGowan, Wind Energy Explained, theory design and applications, Wiley publication
- 7. Leo J.M.J. Blomen and Michael N. Mugerwa, "Fuel Cell System", New York, Plenum Press, 1993.
- 8. D. D. Hall and R. P. Grover, *Biomass Regenerable Energy*, John Wiley, New York, 1987.
- 9. Felix A. Farret and M. Godoy Simoes, *Integration of Alternative Sources of Energy*, 2006, John Wiley and Sons.
- 10. Robert Huggins, Energy Storage, Springer, 2010
- 11. M. Ehsani, Y. Gao, and Ali Emadi, *Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design*, Second Edition, CRC Press.

- 12. S. Chakraborty, M. G. Simões and W. E. Kramer, *Power Electronics for Renewable and Distributed Energy System*, Springer 2013
- 13. Ahmed Faheem Zobaa, *Energy storage Technologies and Applications*, InTech Publication 2013.
- 14. N. Femia G. Petrone, G. Spagnuolo and M. Vitelli, *Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems*, CRC Press, 2013

Website Reference:

- 1. http://nptel.iitm.ac.in: 'Energy Resources and Technology' web-course
- 2. http://nptel.iitm.ac.in: 'Non conventional Energy Systems' web-course

Other References Material

- 1. Heinrich Ha"Berlin, Photovoltaics System Design And Practice, Wiley, 2012
- 2. Shin'ya Obara, Design of Renewable Energy Systems: Microgrid and Nature Grid Methods, Engineering Science Reference, 2014

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks
Assignments :05 marks
Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	· ·	g Scheme et Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEDLO	Utilization of Electrical							
5013	Energy	3	1	3	1	4		
	(abbreviated as UEE)							

		Examination Scheme							
Course	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
code		Tost 1	Test 2	Avia	Sem.	Duration	Work	Total	
		Test 1	Test Z	Avg.	Exam	(Hrs.)			
EEDLO 5013	Utilization of Electrical Energy	20	20	20	80	03	25	125	

Course	• To impart the knowledge on different types of drives used in electric
Objectives	traction.
Objectives	 To impart the basic knowledge of some domestic electric appliances.
	Students will be able
	• To understand and analyse the power factor for improving the quality of
	supply.
Course	 To analyse different type of traction systems.
Outcomes	 To understand modern tools to control electric traction motors.
Outcomes	• To understand concept of electrical heating and welding and their
	application.
	• To understand different methods of cooling systems used in domestic
	electric appliances.

Module	Contents	Hours
1	Power Factor Power factor, disadvantages of low power factor, Causes of low power factor, methods of power factor improvement, advantages of power factor improvement and economics of power factor improvement.	04
	Requirement of an ideal traction system. Traction system- Non electric traction system, electric traction system, diesel traction. System of Track electrification- DC system, single phase, three phase, composite system (Kando system), single phase AC to DC system. Different accessories for track electrification- overhead wire, conductor rail system, current collector- pantograph, catenary. Traction mechanics-Types of services, speed time curve, trapezoidal and quadrilateral speed time curves, power and energy output from driving axles, average and schedule speed (numerical), specific energy consumption, factors affecting specific energy consumption, dead weight, accelerating weight and adhesive weight.	12
3	Electric Traction Motors and Controls Desirable characteristics of traction motors, suitability of DC series motors, AC series motors, three phase induction motors and linear	10

	induction motor for traction. Control of Traction motors- Requirement, starting and speed control by using rheostat control, series parallel method, transition from series to parallel (shunt transition, bridge transition), thyristor control method, chopper control of motor in DC Traction System, PWM control of induction motor. Breaking-Requirement of breaking system, mechanical breaking, electrical breaking, rheostatic breaking, regenerative breaking. Substation-Location and distribution system, substation equipment, traction SCADA and railway signaling.	
4	Electric Heating	03
,	Classification of electric heating methods, Resistance heating- Direct	
	resistance heating, indirect resistance heating, application, Arc heating-	
	Direct arc heating, indirect arc heating, applications of arc heating,	
	Induction heating. Core type induction furnaces- Ajax Wyatt furnace,	
	coreless induction furnace, Application of induction heating. Dielectric	
	heating- principle, choice of frequency for dielectric heating, application	
	of dielectric heating. Eddy current heating principle and applications.	
5	Electric Welding	03
	Electric welding- welding methods, electric arc welding, resistance types	
	welding and application, modern welding techniques. Electric arc	
	welding- Formation and characteristics of electric arc, effect of arc	
	length, arc blow, Electrode used in arc welding, spot welding machine.	
6	Other application of Electrical Energy	04
	Terminology, Refrigeration and Air conditioning, Refrigeration cycle,	
	Vapour compression type, vapour absorption type, Electrical circuit of a	
	Refrigerator, Room Air conditioner window type and split type.	

Text Books:

- 1. Utilization of Electric Energy by J. B. Gupta, SK Kataria & Sons.
- 2. Utilization of Electric Energy by R. K. Rajput, Laxmi Publications (P) Ltd.
- 3. Generation, Distribution and Utilization of Electric Energy by C.L.Wadhwa, Wiley Eastern Ltd.
- 4. I. Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003

Reference Books:

- 1. Art, Science of . Utilization of Electric Energy by H. Pratap, Dhanpat Rai & Sons
- 2. Electric Traction by H. Pratap, Dhanpat Rai & Sons
- 3. Designing with light- A Lighting Handbook by Anil Valia, Lighting System
- 4. Generation and Utilization of Electric Energy by S. Sivanagaraju, Pearson Eduction India
- 5. M. Ehsani, Y. Gao, S.E. Gay and Ali Emadi, *Modern Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design*, CRC Press. 2005
- 6. "Lamps and lighting" by M.A.Cayless, J.R.Coaton and A.M.Marsden

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks
Assignments :05 marks
Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name		ng Scheme ct Hours)	Credits Assigned				
		Theory	Practical	Theory	Practical	Total		
EEL501	Business Communication and Ethics (abbreviated as BCE)	-	4**	-	2	2		

		Examination Scheme							- 4
Course	Course Name	Theory				Practical			
Course Code		Internal Assessment E		End	Term	Pract.		Total	
		Test	Test	Ava	Sem.	Work	and	Oral	
		1	2	Avg.	Exam	WOIK	Oral		
	Business								
EEL501	Communication	-	-	-	-	50) Y-	50
	and Ethics					1 A			

	To inculcate professional and ethical attitude at the workplace						
Course	 To enhance effective communication and interpersonal skills 						
Objectives	To build multidisciplinary approach towards all life tasks						
	 To hone analytical and logical skills for problem-solving 						
	The students will be able to						
	 Design a technical document using precise language, suitable vocabulary 						
	and apt style.						
	 Develop the life skills/ interpersonal skills to progress professionally by 						
	building stronger relationships.						
Course	 Demonstrate awareness of contemporary issues knowledge of 						
Outcomes	professional and ethical responsibilities.						
	 Apply the traits of a suitable candidate for a job/higher education, upon 						
	being trained in the techniques of holding a group discussion, facing						
	interviews and writing resume/SOP.						
	Deliver formal presentations effectively implementing the verbal and						
	non-verbal skills.						

Module	Contents	Hours					
01	Report Writing						
1.1	Objectives of Report Writing						
1.2	Language and Style in a report						
1.0	Types: Informative and Interpretative (Analytical, Survey and						
1.3	Feasibility) and Formats of reports (Memo, Letter, Short and Long						
	Report)						
02	Technical Writing	03					
2.1	Technical Paper Writing (IEEE Format)						

2.2	Proposal Writing	
03	Introduction to Interpersonal Skills	08
3.1	Emotional Intelligence	
3.2	Leadership and Motivation	-
3.3	Team Building	-
3.4	Assertiveness	-6
3.5	Conflict Resolution and Negotiation Skills	
3.6	Time Management	
3.7	Decision Making	
04	Meetings and Documentation	02
4.1	Strategies for conducting effective meetings	
4.2	Notice, Agenda and Minutes of a meeting	
4.3	Business meeting etiquettes	-
05	Introduction to Corporate Ethics	02
5.1	Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.)	
5.2	Introduction to Intellectual Property Rights	-
5.4	Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and	
	making ethical decisions)	
06	Employment Skills	06
6.1	Group Discussion	-
6.2	Resume Writing	1
6.3	Interview Skills	1
6.4	Presentation Skills	1
6.5	Statement of Purpose	

- 1. Fred Luthans, "Organizational Behavior", McGraw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill

- 4. Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. Sharma R.C. and Krishna Mohan, "Business Correspondence and Report Writing", Tata McGraw-Hill Education
- 7. Ghosh, B. N., "Managing Soft Skills for Personality Development", Tata McGraw Hill. Lehman.
- 8. Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition
- 9. Bell, Smith, "Management Communication" Wiley India Edition, 3rd edition.
- 10. Dr. Alex, K., "Soft Skills", S Chand and Company
- 11Subramaniam, R., "Professional Ethics" Oxford University Press.
- 12. Robbins Stephens P., "Organizational Behavior", Pearson Education
- 13. https://grad.ucla.edu/asis/agep/advsopstem.pdf

Suggested List of Assignments:

- 1. Report Writing (Theory)
- 2. Technical Proposal
- 3. Technical Paper Writing (Paraphrasing a published IEEE Technical Paper)
- 4. Interpersonal Skills (Group activities and Role plays)
- 5. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 6. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 7. Corporate ethics (Case studies, Role plays)
- 8. Writing Resume and Statement of Purpose

Term work:

Term work shall consist of all assignments from the list. The distribution of marks for term work shall be as follows:

Book Report: 10 Marks
Assignments: 10 Marks
Project Report Presentation: 15 Marks
Group Discussion: 10 Marks
Attendance: 05 Marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

University of Mumbai								
Course	Course Name		g Scheme ct Hours)	Credits Assigned				
Code		Theory	Practical	Theory	Practical	Total		
EEL502	Control System Lab (abbreviated as CS Lab)	-	2	-	1	1		

Canaga		Examination Scheme							
	Course Name	Theory				Practical			40
Course Code		Internal Assessment			End	Term	Pract.	20.00	Total
Code		Test 1	Test 2	Ava	Sem.	Work	and	Oral	
		1681 16812	16St Z	est 2 Avg.	Exam	WOIK	Oral		
EEL502	Control					25	•	25	50
EEL302	System Lab	_	-	-	_	23		23	30

Course	 To study basic concepts of control system
Objectives	 To impart knowledge on various components of control systems.
Course Outcomes	 Students will be able To illustrate the functioning of various components of control system. To analyse the response of physical system for various inputs. To analyse the stability of the system using time domain and frequency
	domain techniques by simulation.

Syllabus: Same as that of Course EEC503 Control System – I

Suggested List of Laboratory Experiment:

(A) Laboratory Experiments

- 1. Study of AC Servomotor
- 2. Study of DC Servomotor
- 3. Study of potentiometer as an error detector
- 4. Study of Synchros as an error detector
- 5. Study of AC position control system
- 6. Study of DC position control system
- 7. Obtain time response of first order to step ramp and parabolic input
- 8. Obtain time response of second order system to step input.

(B) Simulation Based Experiments

- 1. Draw root locus and hence obtain steady state stability of control system
- 2. Draw Bode plot and hence obtain steady state stability of control system
- 3. Draw Nyquist plot and hence obtain steady state stability of control system

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum eight experiments. The distribution of marks shall be as follows:

Experiments Performance :10 marks Journal :10 marks Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.

University of Mumbai									
Course Code	Course Name		ng Scheme ct Hours)	Credits Assigned					
		Theory	Practical	Theory	Practical	Total			
EEL503	Electrical Machines Lab - III (abbreviated as EMC Lab -III)	-	2	-	1	1			

Carras		Examination Scheme							4
	Course Name		Theory				Practical		
Course Code		Internal Assessment			End	Term	Pract.		Total
Code		Test 1	Test 2	Avg.	Sem. Exam	Work	and Oral	Oral	
EEL503	Electrical Machines Lab –III	-	-	-	-	25	25) -	50

Course	 To impart practical knowledge of single phase and three phase induction
Objectives	motor.
	Students will be able
	 To evaluate performance of single phase and three phase induction motor by carrying load test.
Course Outcomes	 To analyse performance of single phase and three phase induction motor by carrying no load and blocked rotor test.
	 To illustrate the operation of various type of starters. To illustrate different methods of speed control for three phase induction motor.

Syllabus: Same as that of Course EEC502 Electrical Machines - III

Suggested List of Laboratory Experiment:

- 1) Load Test on three phase sq. cage Induction Motor.
- 2) Load test on three phase slip ring induction motor.
- 3) No load and Blocked rotor test on three phase Induction Motor.
- 4) Performance analysis of three phase Induction Motor using Circle diagram.
- 5) Load Test on single phase Induction Motor.
- 6) No load and Blocked rotor test on single phase Induction Motor.
- 7) Study of different types of starters.8) Speed control by v/f method.

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum six experiments, minimum two drawing sheets (full imperial size) or software based drawing of individual parts and the assembled views of three phase induction motor. Design should be based on the Indian Standard Specifications. The distribution of marks shall be as follows:

Experiments Performance :10 marks Journal :10 marks :05 marks Attendance (Theory and Practical)

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai								
Course	Course Name		g Scheme ct Hours)	Credits Assigned				
Code		Theory	Practical	Theory	Practical	Total		
EEL504	Power Electronics Lab (abbreviated as PE Lab)	-	2	-	1	1		

		Examination Scheme								
Course			Theory				Practical			
Code	Course Name	Internal Assessment			End	Term	Pract.	. 20 50.	Total	
Code		Test 1 Test 2		Δνα	Sem.	Work	and	Oral		
		1681 16	Test 2	Avg.	Exam	WOIK	Oral			
	Power									
EEL504	Electronics	-	-	-	-	25	25	-	50	
	Lab									

Course Objectives	 To impart knowledge about various power semiconductor devices related to its characteristics, ratings, protection and to select semiconductor devices for various applications. To introduce different methods of power conversion such as ac to dc, dc to dc, dc to ac the underlying principles of converter operation and hence to analyse different converter circuits for power conversion. To keep abreast with the latest technologies and research going on in
	different areas related to power electronics.
	Student will be able to
	Draw V-I characteristics of power electronic devices.
	• Simulate the performance of power electronic conversion systems.
	• Analyse various single phase and three phase power converter circuits and
Course	understand their applications.
Outcomes	• Apply the basic concepts of power electronics to design the circuits in the
Outcomes	fields of AC and DC drives, power generation and transmission and energy
	conversion, industrial applications.
	• Identify and describe various auxiliary circuits and requirements in power
	electronics applications such as Gate driver circuit, and snubber circuits
	along with electrical isolation and heat sinks

Syllabus: Same as that of Course EEC504 Power Electronics

Suggested List of Laboratory Experiment:

- **Hardware Based Experiments**
 - V-I Characteristics of SCR
 Firing Circuit of SCR

 - 3. Single phase half /full controlled rectifier circuit
 - 4. Three phase half /fully controlled rectifier circuit with R load
 - 5. Triac Diac circuit based speed control of single phase motor
 - 6. Gate Drive Circuit and snubber circuits (IGBT/MOSFET based)
 - 7. Single phase Inverter (IGBT/MOSFET based)
 - 8. Three phase Inverter (IGBT/MOSFET based)

- 9. Implementation of PWM techniques
- 10. Buck converter
- 11. Boost Converter /Buck-Boost
- 12. AC-AC converter

(B) Applications of Power Electronics Circuits Demonstration

- 13. Closed loop control of DC-DC converter
- 14. Power factor correction in converters
- 15. LED lamp intensity control
- 16. Solar PV based converter / inverter system

(C) Simulation

- 17. Three phase controlled rectifier including source inductance
- 18. PWM Rectifier
- 19. Three phase VSI (120° and 180° conduction mode)
- 20. Bidirectional DC-DC Converter
- 21. Buck Converter
- 22. AC voltage controllers: On-Off and phase control

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum six experiments and at least four simulations. The distribution of marks shall be as follows:

Experiments Performance :10 marks Journal :10 marks Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai								
Course	Course Name		g Scheme t Hours)	Credits Assigned				
Code		Theory	Tutorial	Theory	Tutorial	Total		
EEC601	Protection and Switchgear Engineering (abbreviated as PSE)	3	•	3		3		

		Examination Scheme						
Course				Theor	y			
code	Course Name	Internal Assessment			End	Exam	Term	Total
code		Tost 1	Tost 2	Avia	Sem.	Duration	Work	Total
		Test 1	Test 2	Avg.	Exam	(Hrs.)		
	Protection and							
EEC601	Switchgear	20	20	20	80	03	-	100
	Engineering							

Course	To impart basic knowledge of power system protection, substation
Objectives	equipment and protection schemes.
	Students will be able
	• To select the appropriate switching/protecting device for substations.
	• To discriminate between the application of circuit breaker and fuses as
	a protective device.
Course	• To understand the basic concept of relay, types of relay and their
Outcomes	applications in power system.
	• To select the specific protection required for different components of
	power system according to the type of fault.
	• To apply the specific protection provided for different types of
	transmission lines.

Module	Contents	Hours
1	Substation Equipment and switching devices	03
	Substation Equipment:	
	Switchgear-Definition, Types, Location of switchgear in typical power	
	system	
	Switching Devices:- Isolator & Earthing switch (Requirements &	
	definitions, types and construction, Pantograph Isolators, Ratings),	
	Contactors: Basic working principle, Terms & Definitions, contactors as	
970	starters for motors, rated characteristics/ Utilization categories of	
	contactors,	
2	Circuit Breakers and Fuses:	09
1	Circuit Breaker:	
	Arc initiation, arc quenching principles, Restriking voltage, RRRV,	
	Recovery voltage, Types of Circuit Breakers: MCB, MCCB, ELCB, air	
	circuit breakers, oil circuit breakers, SF6 circuit breakers, vacuum circuit	
	breakers (working principle, Construction, operating mechanisms,	
	ratings & applications), Mechanical life, Electrical life and testing of	
	circuit breakers.	
	HRC Fuses & their applications-Introduction, types of devices with	

	fuse, definitions, construction, fuse link of HRC fuse, Action of HRC	
	fuse, shape of fuse element, specification of a fuse link, characteristics	
	of fuse, cut-off, classification & categories, selection of fuse links, fuse	
	for protection of motor, discrimination, fuse for protection of radial	
	lines/meshed feeders, equipment incorporating fuses, high voltage	
	current limiting fuses, expulsion type high voltage fuses, drop out fuse.	
3	Introduction to Protective relaying: About protective relaying, Shunt	09
	& Series Faults, causes and Effects of faults, Importance of protective	
	relaying, Protective zones, primary & Back-up protection, Back-up	
	protection by time grading principle, desirable qualities of protective	40
	relaying, some terms in protective relaying, Distinction between relay	
	unit, protective scheme and Protective system, Actuating quantities,	
	Thermal Relays, Electromechanical relays and static relays, Power line	
	carrier channel, programmable relays, system security, role of engineers.	
	Electromagnetic relays - Introduction, basic connections of relay,	
	Auxiliary switch, sealing and auxiliary relays, measurement in relays,	
	Pick up, drop off, Attracted armature & induction disc relays, Thermal,	
	bimetal relays, Frequency relays, under/over voltage relays, DC relays,	
	All or nothing relays.	
	Different Principles of protection - Over current & earth fault (non-	
	directional & directional types), differential protection, distance	
	protection (Working Principle of Impedance relay, Causes and remedies	
	of Over reach-under reach, Reactance and Mho relay, Power swing	
	blocking relay).	
4	Protection Schemes Provided for major Apparatus:	06
	Generators - Stator side (Differential, Restricted Earth fault, protection	
	for 100% winding, Negative phase sequence, Reverse power, turn-turn	
	fault), Rotor side (Field suppression, field failure, Earth fault, turn to	
	turn fault)	
	Transformers-Differential protection for star delta Transformer,	
	Harmonic restraint relay, REF protection, Protection provided for	
	incipient faults (Gas actuated relay).	
	Induction motors - Protection of motor against over load, short circuit,	
	earth fault, single phasing, unbalance, locked rotor, phase reversal, under	
	voltage, winding temperature.	
5	Protection of Transmission Lines:	05
	Feeder protection - Time grading, current grading, combined time &	
7	current grading protection provided for Radial, Ring Main, Parallel, T-	
	Feeder.	
	Bus Zone Protection - Differential protection provided for different	
	types of bus zones.	
JAN JAN	LV, MV, HV Transmission Lines - Protection provided by over current,	
	earth fault, Differential and Stepped distance protection.	
1	EHV & UHV Transmission lines - Need for auto-reclosure schemes,	
	Carrier aided distance protection (Directional comparison method),	
	Power Line Carrier Current protection (Phase comparison method).	
6	Introduction to Static & Numerical Relays:	04
	Static Relays - Introduction, Definition, Advantages and Disadvantages,	
	Application of op-amps, logic gates, DSP, in static/ digital Relays.	
	Relays as comparators (Amplitude & phase), Distance relays as	

comparators.
Numerical Relays- Introduction, Block diagram of numerical relay,
Signal sampling, Anti –Aliasing Filter, Introduction to the concept of
Phase Measurement Unit

Text Books:

- 1. Switchgear & Protection by Sunil.S.Rao, Khanna Publications
- 2. Power system Protection & Switchgear by Badriram Vishwakarma, TMH
- 3. Power System Protection And Switchgear by Bhuvanesh A O, Nirmal CN, Rashesh PM, Vijay HM, Mc Graw Hill

Reference Books:

- 1. Fundamentals of protection by Paithanker & Bhide.S.R, P.H.I
- 2. Static Relays by Madhava Rao, TMH
- 3. A text book on Power System Engineering by Soni, Gupta, Bhatnagar & Chakraborthi, Dhanpat Rai & Co
- 4. Protective Relaying by Lewis Blackburn, Thomas.J.Domin
- 5. Power System Protection by P.M.Anderson, Wiley Interscience
- *6. A Web Course on Digital protection of power system by Prof. Dr. S.A.Soman, IIT Bombay.
- *7. Modern Power System Protection DivyeshOza, TMH Publication

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching Scheme (Contact Hours)		Cree	dits Assigne	ed		
		Theory	Tutorial	Theory	Tutorial	Total		
EEC602	Electrical Machines -IV (abbreviated as EMC - IV)	4	-	4	-	4		

			Examination Scheme Theory					
C					5			
Course code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
Code		Test 1	Test 2	Avia	Sem.	Duration	Work	Total
		1 est 1	Test 2	Avg.	Exam	(Hrs.)		
EEC602	Electrical Machines -IV	20	20	20	80	03		100

Course	 To impart knowledge of performance and operation of synchronous machine.
Objectives	• To study working, control and applications of brushless motor.
	Students will be able
	• To determine the performance parameters of synchronous machines
	graphically and analytically by conducting different test.
	 To analyse the performance parameters of synchronous machines.
Course	• To understand the concept of direct and quadrature axis parameters of
Outcomes	synchronous machines.
	 To understand and analyse the operation of synchronous motor.
	• To analyse abc to dq0 transformation and steady state operation of
	synchronous machine.
	 To understand the operation and analyse control of BLDC motors.

Module	Contents	Hours
1	Synchronous Generator: Construction, E.M.F. equation, Winding	12
	factors, Armature reaction, Phasor diagrams for cylindrical rotor	
	generator, Voltage regulation, No load (OC) and SC test, Voltage	
	regulation methods: EMF; MMF; ZPF; ASA; Saturated Synchronous	
	Reactance.	
2	Performance of Synchronous Generator: Power flow equations and	08
	maximum power conditions, Need for parallel operation and conditions,	
	Effect of variation of field current and prime mover input on parallel	
	operation, Concept of infinite bus, Effect of variation of field current on	
	alternator connected to infinite bus, Numericals on parallel operation	
3	Salient pole synchronous generator: Concept of direct and quadrature	05
	reactance, Blondel's two reaction theory, Phasor diagram of salient pole	
	machine, Power angle characteristics, Synchronising power and torque.	
4	Synchronous Motor: Principle of operation, Self starting methods,	12
	Phasor diagram, Load angle (δ), Power flow equations and maximum	
	power conditions, Effect of change in excitation and mechanical power	
	on performance of motor, V and Inverted V curves, Power factor	
	control, Hunting, Excitation and power circles, Measurement of X _d and	

	X _q by slip test, Starting against high torques						
5	Theory of Synchronous Machines: Ideal synchronous machine,	06					
	Transformation to direct and quadrature axis variables, basic machine						
	relations in dq0 variables, Steady state analysis.						
6	BLDC Motor: Classification, Construction, Electronic commutation,	05					
	Principal of operation, Microprocessor/DSP based control scheme of						
	BLDC motor (block diagram and flow chart), Sensor less control,						
	Comparison with DC motor, Applications.						

Text Books:

- 1. Bimbhra P.S., Electric Machinery, Khanna Publisher,
- 2. Bimbhra P.S., Generalized Machine Theory, Khanna Publisher,
- 3. V. K. Mehta, Principles of Electrical Machines, S Chand Publication
- 4. E.G.Janardanan, Special Electrical Machines, PHI Publisher, 2016.
- 5. K. Venkataratnam, Special Electrical Machines, University Press, 2016.

Reference Books:

- 1. Ashfaq Husain, Electric Machines, Dhanpat Rai and co. publications
- 2. A.E. Fitzgerald, Kingsly, Stephen., Electric Machinery, Tata McGraw Hill

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course	Course Name	Teaching Scheme (Contact Hours)		Credits Ass		ed		
Code		Theory	Tutorial	Theory	Tutorial	Total		
EEC603	Signal Processing (abbreviated as SP)	3	1	3	1	4		

				Exa	mination	Scheme		
Course								
code	Course Name	Internal Assessment			End	Exam	Term	Total
code		Test 1	Test 2	Avia	Sem.	Duration	Work	Total
		1 est 1	Test 2	Avg.	Exam	(Hrs.)	•	
EEC603	Signal Processing	20	20	20	80	03	25	125

Course Objectives	To impart knowledge on continuous and discrete time signals.
	Students will be able
	 To discriminate continuous and discrete time signals and systems.
	• To understand the transformation of discrete time signal to Z domain.
Course	• To analyse frequency response of systems using Z domain.
Outcomes	To understand discrete and fast Fourier transform.
	To design FIR system.
	To design IIR System.

Module	Contents	Hours
1	Introduction	06
	Classification of Signal and System:	
	Definition and classification of continuous and discrete signals. Standard	
	signals, periodic/non periodic, Even and odd, Energy and power signal,	
	Sampling Theorem (Derivation is not Required), Basic operations on	
	signal (Folding, Scaling and Time shifting). Definition and classification	
	of systems: Causal /Anti causal, Time-Variant/Invariant, Linear/Non-	
	Linear, stable/unstable, Memory/ Memory less System (static and	
a a Eastern	dynamic). Convolution in DT domain (Matrix Method only)	
2	Z-Transform	06
	Z-Transform of bilateral signal, Definition of ROC, Properties of ROC,	
	Properties of Z-transform, Inverse Z-Transform (only partial fraction)	
3	Frequency Response	06
	Pole-zero plot in DT domain, Minimum phase, Maximum phase, Mixed	
	phase and Linear, Phase System based on location of zeros, Low pass,	
	high pass, Band pass and band reject system based on pass band	
1	frequency, Formation of Difference Equation, Solution of difference	
	Equation (with & without initial Conditions), Zero input, zero state and	
	Total Response of the system, Magnitude and phase response (only	
	Analytical Method)	
4	Discrete and Fast Fourier Transform	06
	DTFT, DFT & IDFT (Only Matrix Method), Properties of DFT, DIT	
	FFT Algorithm (Radix-2)	
5	Design of FIR System	06

	Introduction to FIR System, Group Delay, phase Delay, Condition for							
	Linear phase FIR system, Window Technique (only Rectangular							
	window function, Hamming Window function)							
6	Design of IIR System							
	Introduction to IIR System & Bilinear Transformation, Digital							
	Butterworth Filter design using Bilinear Transformation							

Text Books:

- 1. Salivahan S.," Digital Signal Processing", TMH Publication, 2012
- 2. Oppenhein & Schafer," Discrete Time Signal Processing," PHI Publication 1989.
- 3. Haykin S and Van Veen B," Signal and System", Wiley Publication, 2nd Ed.
- 4. Linder D.K.," Introduction to Signal & System," McGraw Hill International, 1999.

Reference Books:

- 1. Proakis & Manolakis," Digital Signal Processing", PHI Publication, 1995.
- 2. Mitra S.K.," Digital Signal Processing," TMH Publication, 2001.
- 3. Li Tan," Digital Signal Processing, Fundamental & Application", Elsevier Publisher, Academic Press

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks
Assignments :05 marks
Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching Scheme (Contact Hours)		Cre	dits Assigne	ed		
		Theory	Tutorial	Theory	Tutorial	Total		
EEC604	Microcontroller and its Applications (abbreviated as MCA)	4	-	4	-	4		

		Examination Scheme						
Course	Course Name							
code		Internal Assessment			End	Exam	Term	Total
code		Test 1	Test 2	Ava	Sem.	Duration	Work	Total
		1 est 1	Test 2	Avg.	Exam	(Hrs.)		
	Microcontroller							
EEC604	and its	20	20	20	03	80	-	100
	Applications							

Course	• To impart knowledge on PIC 18 microcontroller based embedded						
Objectives	system using C programming.						
	Students will be able						
	 To understand the features and architecture of PIC 18 microcontroller. 						
	• To understand the instructional set and apply to basic arithmetic and						
Course	logical operations.						
Outcomes	 To understand the supportive devices of PIC 18 microcontrollers. 						
Outcomes	• To understand the interfacing of PIC 18 microcontroller and it's						
	peripheral.						
	 To understand the coding of PIC 18 microcontroller using C language. 						
	 To design general purpose applications of PIC 18 microcontroller. 						

	Module	Contents	Hours					
	1	Introduction to Microcontroller	06					
		Block diagram of generic micro controller, Micro controller versus						
		Microprocessor, A brief history of PIC microcontroller, Overview of						
		PIC 18 family and features, Internal Bus structure of PIC						
1		microcontroller, Clock frequency, machine cycle and instruction						
		cycle.						
	2	PIC18F Programming Model and Instruction Set	12					
		PIC18 microcontroller programming model, Bus architecture, PIC						
	1/2 4	microcontroller program memory and data memory organization,						
		Special Function Registers (SFRs), General Purpose Registers						
		(GPRs), CPU registers, Working Register (Wreg), Status Register,						
	11/1/3	Bank Select Register (BSR), Instruction Decoder, Program Counter						
	1	(PC) and program ROM, File Select Register (FSR) and File						
		memory, Stack Pointer (STKPTR) and Stack, PIC 18 internal						
		Architecture (ALU, EEPROM, RAM, IO Ports, Timer, CCP module,						
		ADC), Concept of Pipelining.						
		Instruction Set, Data transfer instructions, Arithmetic and Logical						
		Instructions, Rotate instructions, Branch instructions, Bit						
		manipulation instructions. (Assembly programs are restricted to basic						

	arithmetic and logical operations only)`	
3	PIC 18 Support Devices	08
	Timer Module: Basic Concept of Timers and counters, Timer	00
	Registers, Control Registers, 8 bit and 16 bit operation (only for	
	Timer 0 and 1), CCP module (Capture, Compare and PWM).	
	ADC module: ADC Features, Block diagram of ADC module, ADC	
	Registers, ADCON0, ADCON1.	
	Interrupt Module: Basic concept of Interrupt, PIC 18 Interrupts,	
	Interrupt versus polling, Interrupt sources, Interrupt vector, Interrupt	
	service routine, Interrupt process, RCON Register, INTCON, IPR1,	40
	PIE1.	
4	Parallel Ports and Serial Communication	06
	IO PORT Module: Basic concept of I/O interfacing, Port Registers,	
	TRIS registers, LAT registers, Simple port interfacing and	
	addressing, Interfacing input peripherals, Interfacing output	
	peripherals.	
	Serial communication: Basics of serial communication, USART	
	module, SPBRG, TXREG, RCREG, TXSTA, RCSTA, PIR1.	
5	PIC Programming in C	08
	IO programming: Byte size IO, Bit addressable IO.	
	Timer programming: Generating delay, generating frequency.	
	Interrupt programming: Timer0 and Timer1 interrupt to generate	
	square wave.	
	Serial port programming: Transmit data serially, Receive data	
	serially.	00
6	Microcontroller Applications	08
	Interfacing matrix keyboard and Seven segments LED display, LCD	
	Interfacing, ADC Interfacing, Traffic signal controller, DC motor	
	interfacing, Stepper motor interfacing, PWM signal generation.	

Reference Books:

- 1. Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC 18 Microcontroller Family), Ramesh Gaonkar, Penram International publications (Ind) Pvt. Ltd.
- 2. PIC Microcontroller and Embedded Systems, Muhammad Ali Mazidi, Rolind D Mckinlay and Danny Causey, Pearson Education.
- 3. Microcontroller from Assembly Language to C using PIC18FXX2, Robert B. Reese, Davinici Engineering press.
- 4. PIC Microcontroller: An Introduction to Software and Hardware Interfacing, Han Way Huang, Cengage Learning.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Course Code	Course Name	1	g Scheme t Hours)	Credits Assigned		
Code		Theory	Tutorial	Theory	Tutorial	Total
EEC605	Control System -II (abbreviated as CS-II)	4	-	4	-	4

		Examination Scheme						
Course								
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
Code		Tost 1	Tost 2	A ***	Sem.	Duration	Work	Total
		Test 1	Test 2	Avg.	Exam	(Hrs.)		
EEC605	Control System – II	20	20	20	80	03		100

Course	To impart knowledge and skill on compensator design.				
Objectives	• To study basics of digital control system and design of digital compensator.				
	Students will be able				
	 To understand the basic design of various compensators. 				
C .	 To design compensators using root locus techniques. 				
Course Outcomes	 To design compensators using frequency response techniques. 				
	 To design compensators using state variable approach. 				
	• To illustrate basics of digital control system.				
	 To design digital compensators. 				

Module	Contents	Hours						
1	Introduction to the Compensator: Basic concept of compensator	04						
	design, its requirement, position of compensator in a control system,							
	cascade compensator, feedback compensator, gain compensation, lag,							
	lead and lag-lead compensator, proportional, derivative, integral							
	Compensation, Three term PID, physical realization of compensator							
	with passive and active components, basic block diagrams of a							
	compensated closed loop control system							
2	Design of Compensators using Root Locus Technique: Introduction,	12						
	improving steady state error by gain compensation, transient response							
	improvement by cascade compensation, improving steady state and							
	transient response, design of rate feedback compensator, notch filter,							
3	Design of Compensators using Frequency response Technique	10						
	(Bode Plot): Introduction, transient response improvement by gain							
	adjustment, Lag compensation, Lead compensation, Lag-lead							
	compensation.							
4	Design of Compensators using State variable approach:	8						
110.	Introduction, pole placement topology, controller design by pole							
	placement topology in phase variable form, controllability and							
	complete controllability, controllability matrix, controllability by							
	inspection, alternative approach to controller design, controller design							
	by transformation.							
	Introduction to Observer / estimator, full order and reduced order							
	observer/ estimator, observability matrix, observability by inspection,							
	observer design by pole placement alternative approach to Observer							

	design, Observer design by transformation, steady state error design using integral control.	
5	Digital control System: Introduction, advantage of digital control, components of digital control system, derivation of digital/ pulse transfer function, block diagram reduction, stability of digital system on Z-plane, bilinear transformation, steady state error and error constants	6
6	Design of Digital Compensators: Transient response on the Z-plane, gain design on Z plane for transient response using root locus, stability design by root locus, cascade compensation (design of digital lead, lag and lag-lead compensator)of digital system using s-plane, implementing the digital compensator.	8

Text books:

- 1. Control system engineering by Norman Nise 2nd to latest edition
- 2. Control Engineering: An Introductory course by Wilkie J., Johnson M., Katebi R., Palgrave MacMillan, Ist to latest edition
- 3. Industrial Control Electronics: Devices, Systems and Applications by Bartelt, Delmar Thomson Learning, 1st edition
- 4. Introduction to Programmable Logic Controller by Dunning G, Delmar Thomson Learning, 2nd edition

Reference books:

- 1. Modern control Engineering by Richard C Dorf, SH Bishop, Wesley edition eighth Edition
- 2. Linear Control system Analysis and design with MATLAB, by J.J. Azzo, C. H. Houpis, S.
- N. Sheldon, Marcel Dekkar, ISBN 0824740386
- 3. Control System Engineering, Shivanagraju s. Devi L., New age International latest edition
- 4. Control System engineering by Nagrath and Gopal, 5th to latest edition, Wiley Eastern
- 5. Modern control system engineering by K. Ogata, printice Hall.
- 6. Automatic control systems, Basic analysis and Design, William A. Wolovich, Oxford
- 7. Process Control principles and applications, Surekha Bharot, Oxford Higher education

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai

Course Code	Course Name		g Scheme et Hours)	Credits Assigned		
Code		Theory	Tutorial	Theory	Tutorial	Total
EEDLO	Digital Communication					
6021	Engineering	3	1	3	1	4
0021	(abbreviated as DCE)					

		Examination Scheme						
Course								
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
code		Test 1	Test 2	Avia	Sem.	Duration	Work	Total
		1 est 1	Test 2	Avg.	Exam	(Hrs.)	-	
EEDLO	Digital							
6021	Communication	20	20	20	80	03	25	125
0021	Engineering						1 100	

Course Objectives	To impart knowledge and skill on digital communication engineering.
Course Outcomes	 Students will be able To understand the concept and blocks of digital communication system. To understand and analyse the performance of base band and pass band digital communication system. To analyse the different modulation techniques used in digital communication system. To identify the presence of error in coded signal and design the error control system. To understand basic concept of different type of digital communication systems.

Module	Contents	Hours
1	Information theory	06
	Block diagram of a digital communication system, Concept and	
	measures of information, entropy and it's properties. Transmission rate	
a a distinct	and channel capacity of noisy channels, Shannon's theorem on channel	
	capacity. Source Coding, Shannon's Source Coding Theorem, Shannon-	
	Fano Source Coding, Huffman Source Coding. Introduction to Lempel	
	Ziv coding	
2	Baseband Modulation and Transmission	06
9700	Line codes and their desirable properties, PSD of digital data. Discrete	
	PAM signals and its power spectra. Concept of inter channel and inter	
	symbol interference, Nyquist criterion for zero ISI, sinusoidal roll-off	
1	filtering, correlative coding, equalizers, and eye pattern. Duo-binary	
	encoding and modified duo-binary encoding	
3	Baseband Detection	04
	Orthogonality, representation of signals. Maximum likelihood decoding	
	Correlation receiver, equivalence with matched filter	
4	Modulation Techniques	08
	Generation, detection, Coherent and non-coherent reception, signal	
	space diagram, spectrum, bandwidth efficiency, and probability of error	

	analysis of : Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)Modulations, Binary Phase Shift Keying (BPSK) Modulation Quaternary Phase Shift Keying QPSK)	
5	5. Error Control Systems:-	08
	 5.1 Types of error control, error control codes, linear block codes, generator matrix, and systematic linear block. codes, parity check matrix, syndrome testing ,error correction, and decoder implementation 5.2 Cyclic codes: Algebraic structure of cyclic codes, binary cyclic code properties, encoding in systematic 5.3 Introduction of Convolution code: State diagram, code tree, trellis diagram? 	~
6	Overview of different types of communication :-	04
	Power Line Carrier communication, Satellite communication, OFC	
	(Block Diagram level)	, ,

Text Books:

- 1. Tomasi W., "Advanced Electronics Communication systems", PGI, 4th Edition 1998
- 2. Taub & Schiling, "Principles of Communication Systems", McGraw Hill, 2nd Ed. 1987
- 3. John C. proakis, "Digital Communication", McGraw Hill International, 1995
- 4. Haykin S, John Wiley & Sons, "Digital Communication", 3rd Ed. 1995

Reference Books:

- Lathi B.P., "Modern Digital and Analog Communication System, Oxford University Press, 3rd Edition 1998
- 2. Dennis Roddy and John Coolen, "Electronic Communications", Prentice Hall of India, 3rd Ed. 1992
- 3. Amitabha Bhattacharya, "Digital Communication", Tata Mcgraw Hill

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks
Assignments :05 marks
Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.

- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Course Code	Course Name		g Scheme et Hours)	Credits Assigned		
Code		Theory	Tutorial	Theory	Tutorial	Total
EEDLO 6022	Micro-Grid (abbreviated as MG)	3	1	3	1	4

		Examination Scheme						
Course				Theor				
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
Code		Tost 1	Tost 2	A ***	Sem.	Duration	Work	Total
		Test 1	Test 2	Avg.	Exam	(Hrs.)	0 /	
EEDLO 6022	Micro-Grid	20	20	20	80	03	25	125

Course Objectives	 To impart knowledge of renewable energy based Microgrid technology, types and issues associated in their practical realization. To elaborate the various control and operational strategies used for practical microgrids.
Course Outcomes	 Students will be able To identify and describe the evolvement Microgrid, its features and barriers. To select, size and design the various microgrid resources. To model, analyze and design the power electronics (PE) interfaces for various microgrid sources To identify and describe the role communication in Microgrid realization. To identify and describe various operational strategies and protection schemes suitable for Microgrid. To apprise the different standards applicable for microgrid deployment

Module	Contents	Hours
1	Introduction to Microgrid:	03
	Microgrid: Definition, What is not a microgrid, Typical structure and	
	configuration of a microgrid, Significance of microgrids, Sources of	
	microgrid, Types of microgrids, AC, DC and hybrid microgrids;	
	Technical implications and social fall out of microgrid, Market Models	
	and business cases for microgrids.	
2	Microgrid Sources and Power Electronic Interfaces:	08
	Review of Microgrid sources: basics characteristics and selection; Power	
	Electronics (PE) interface and design for microgrid DC and AC sources.	
	Protection and co-ordination, Power Quality issues and Solutions;	
	Microgrid and Energy Storage Systems (ESS), Portable and Stationary	
Maril	ESS, Review of Flywheel, Battery and Ultra-capacitor; PE Interface	
	design for ESS.	
3	Control and Design of Power Electronic Interfaces:	10
	Determination of Control laws, Power relations and power control, Bi-	
	directionality and its need in a Microgrid; Control of DC-DC converters	
	and inverter and challenges in a Microgrid; Micro-grid Control	
	Strategies: Centralized, Decentralized and Hierarchical control, Multi-	
	Agent System based control; Power Control and Energy Management in	
	Microgrids.	

4	Communication Infrastructure:	05
	Requirement of Communication System in microgrids, Communication	
	protocols and standards; Selection of communication protocols for	
	microgrids. Event triggered system and Time triggered system, Unicast	
	and Multicast Communication, Impact of time latencies on operation.	
5	Operation of Microgrid and Microgrid Protection:	07
	Modes of Operation: Grid Connected Mode, Islanding Mode, Issues in	
	Island Mode of operations, Islanding detection, Reliability and Stability	
	Issues in islanding; Protection: Fault Behavior in Grid Connected Mode	
	and Island mode, Types of Protection Systems Fault Source Based	40
	protection, Adaptive protection.	
6	Microgrid Standards and Deployment:	03
	IEEE-1547 series, Review of worldwide Microgrid installations,	
	Economic evaluation and planning for microgrids; Microgrids in smart	× -
	grid scenario.	

Text Books:

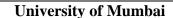
- 1. Nikos Hatziargyriou, "Microgrids: Architectures and Control," Wiley-IEEE Press, 2013
- 2. Magdi S Mahmoud, "Microgrid: Advanced Control Methods and Renewable Energy System Integration", Butterworth-Heinemann, 2016
- 3. S. M. Sharkh, M. A. Abu-Sara, G. I. Orfanoudakis and B. Hussain, "Power Electronic Converters for Microgrids," Wiley IEEE Press
- 4. Remus Teodorescu, Marco Liserre and Pedro Rodriguez, "Grid Converters for Photovoltaic and Wind Power Systems," Wiley Publications
- 5. Amirnaser Yazdani and Reza Iravani, "Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications," Wiley-IEEE Press

Reference Books:

- 1. Smart Grid:Fundamentals of Design and Analysis by James Momoh, IEEE Press and
- 2. Wiley Publications
- 3. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable Energy in Electric Power Systems", Wiley
- 4. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response" CRC Press

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project


Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks
Assignments :05 marks
Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Course Code	Course Name	1	g Scheme et Hours)	Credits Assigned		
Code		Theory	Tutorial	Theory	Tutorial	Total
EEDLO 6023	Advanced Power Electronics (abbreviated as APE)	3	1	3	1	4

Course				Theor	y			-
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
code		Toot 1	Test 2	Avia	Sem.	Duration	Work	Total
		Test 1	Test 2	Avg.	Exam	(Hrs.)	-	
EEDLO 6023	Advanced Power Electronics	20	20	20	80	03	25	125

	• To understand dc to dc conversion with isolation, the underlying
	principles of converter operation and hence to analyze different
	converter circuits for power conversion.
	• To understand the principles of design of magnetics such as high
Course	frequency transformers and inductors.
Objectives	• To keep abreast with the latest technologies and research going on in
Objectives	different areas related to power electronics.
	 To enhance the capability of problem solving skills.
	• To model the converter and design the controller for deeper
	understanding and detailed analysis.
	Student will be able to
	• Select and design power electronic converter topologies for a broad
	range of energy conversion applications.
	• Analyze and simulate the performance of power electronic conversion
	systems.
Course	 Ability to model and design controllers for the closed loop operation of
	power converters.
Outcomes	• Apply the basic concepts of power electronics to design the circuits in
	the fields of AC and DC drives, power generation and energy
	conversion, industrial applications, extraction of energy from
	renewable sources.
	Build and troubleshoot power electronics circuits.
	 Deliver technological solution in the field of power electronics.
	2 cm of technological solution in the field of power electronies.

Module	Contents	Hours					
1	Switching Voltage Regulators Introduction; Linear power supply	10					
	(voltage regulators); Switching voltage regulators; unidirectional and						
-	bidirectional core excitation; Review of basic dc-dc voltage regulator						
	configurations -Buck, Boost, Buck-Boost converters, Bidirectional						
	Converter (BDC) and their analysis for continuous and discontinuous						
	mode; Other converter configurations like Flyback converter, Forward						
	converter, Push-pull converter; Design criteria for SMPS; Multi-output						
	switch mode regulator.						

2	Resonant dc to dc converters: Drawbacks of switch-mode converters,	03
	classification of resonant converters, basic resonant circuit concepts,	
	Load resonant converters, series and parallel loaded, steady state	
	operating characteristics, Resonant switch converters - ZVS, ZCS,	
	comparison of resonant converters, applications of resonant converters	
3	Design of Magnetics (Boost, Buck, BDC and flyback only).: Review	05
	of magnetic concepts, volt-sec balance, area product, design of inductor,	
	design of high frequency transformer, numericals on design of inductor	
	and transformer for dc to dc converters.	
4	Modeling and control converters and inverter (Boost, Buck, BDC	09
	and flyback only): State space model of various dc to dc converters,	
	state space averaging techniques, small signal analysis, transfer function,	
	feedback control, compensator design, voltage mode control, current	
	mode control. Modeling of grid connected Inverter with LC filter,	~
	Compensator design with current mode control and DC link voltage	
	control loop. Digital control of power electronic converters	
5	Multi-Level Inverter: Need for multilevel inverters, Diode clamped,	04
	flying capacitor and cascaded MLI, Phase shifted and level shifted	
	PWM techniques, introduction to SVM for three level inverter,	
	Applications of multilevel inverters.	
6	Applications of power electronic converters: Solar PV Power	05
	Conditioning unit (PCU), Battery PCU, Active Filters, AC and DC	
	drives. Thermal management and EMI issues in Practical power	
	Electronics systems	

Text Books:

- 1. N.Mohan, T.M.Undeland, W.P. Robbins, —Power Electronics, Converters, Applications & Design, Wiley India.
- 2. R W Erickson and D Maksimovic, —Fundamental of Power Electronics, Springer, 2nd Edition.
- 3. M.H.Rashid, Hand book of Power Electronics", Third edition Butterworth-Heinemann; 2011
- 4. Joseph Vithayathil —Power Electronics, Tata McGraw Hill
- 5. Daniel.W.Hart, "Power Electronics", Mc GrawHill Publications 2010
- 6. P.S Bhimbra, "Power Electronics", Khanna Publishers.
- 7. Simon Ang, Alejandro Oliva, "Power-Switching Converters" Taylor and Francis group
- 8. L.Umanand, "Design of Magnetic Components for Switched Mode Power Converters", New Age International

Reference Books:

- 1. P. T. Krein, Elements of Power Electronics, Oxford University Press.
- 2. L. Umanad, "Power Electronics: Essentials & Applications," Wiley.
- 3. A Yazdani, R. Iravani, Voltage- Sourced Converters in Power Systems, Wiley, IEEE press.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Term work:

Term work shall consist of minimum six tutorials and one group mini project.

Mini-project: Group of students (4 in a group) will choose a fairly complex power electronics application in their preferred area, complete the analysis and detailed design of power converter and control for this application, and finally validate the design using hardware implementation supported with simulation(if necessary). A formal technical report is required on the last day of class.

The distribution of marks for term work shall be as follows:

Tutorials :10 marks
Group Mini Project :10 marks
Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Course Code	Course Name		g Scheme ct Hours)	Cre	dits Assigne	ed
Code		Theory	Practical	Theory	Practical	Total
	Electrical Protection					
EEL601	Lab	-	2	-	1	1
	(abbreviated as EP Lab)					

		Examination Scheme							
Course		Theory				Practical			- 40
Course Code	Course Name	Interna	al Assess	ment	End	Term	Pract.	30.00	Total
Code		Test 1	Test 2	Avg.	Sem.	Work	and	Oral	
		1 est 1	16St Z	Avg.	Exam	WOIK	Oral		
EEL601	Electrical Protection Lab	-	-	-	-	25	- 3	25	50

Course Objectives	To introduce the concept of different protection schemes.
	Students will be able
	 To understand the concept of various over current protection scheme and
Course	its applications in power system.
Outcomes	• To understand the concept of various over/under voltage, over/under
	frequency and temperature protection scheme and its applications.
	 To understand the working principle of various protective devices.

Syllabus: Same as that of Course EEC601 protection and switchgear Engineering.

Suggested List of Laboratory Experiment:

- 1. Demonstration of Inverse time Over-current Relay & Plotting the characteristics
- 2. Demonstration of Over-current protection Relay
- 3. Demonstration of Directional Over-current Protection Relay
- 4. Demonstration of Differential Over-current Protection Relay
- 5. Demonstration of Under/Overvoltage Protection
- 6. Demonstration of Motor winding temperature protection
- 7. Demonstration of Gas actuated Relays
- 8. Demonstration of working parts of different Fuses, MCB, MCCB, RCCB & Circuit Breakers.
- 9. Visit to a substation & a report preparation.

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum six experiments. The distribution of marks shall be as follows:

Experiments Performance :10 marks
Journal :10 marks
Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.

	Unive	rsity of Mumbai	
Course	Course Name	Teaching Scheme	Credits Assigned

Code		(Conta	ct Hours)			
		Theory	Practical	Theory	Practical	Total
EEL602	Electrical Machines Lab - IV (abbreviated as EMC Lab-IV)	-	2	-	1	1

		Examination Scheme							
Course		Theory			Practical				
Course Name		Internal Assessment		End	Term	Pract.		Total	
Code		Test 1	Test 2	Ava	Sem.	Work	and	Oral	
		1 est 1	Test 2	Avg.	Exam	VVOIK	Oral		
	Electrical							44	
EEL602	Machines Lab	-	-	-	-	25	25	0	50
	-IV								

Course Objectives	To impart practical knowledge on synchronous machines
	Students will be able
	 To analyse the operation of synchronous machines.
Course	 To analyse the voltage regulation of synchronous machines.
Outcomes	 To analyse the synchronization or parallel operation of synchronous
	machine.
	 To determine the parameters of synchronous machines for its analysis.

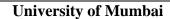
Syllabus: Same as that of Course EEC602 Electrical machines - IV

Suggested List of Laboratory Experiment:

- 1. Constructional details of Synchronous machine
- 2. Voltage regulation of Alternator by Direct loading method
- 3. Voltage regulation of Alternator by EMF and MMF method
- 4. Voltage regulation of Alternator by ZPF and ASA method
- 5. Synchronization / Parallel operation of Alternator
- 6. Starting methods of Synchronous motor
- 7. 'V' and inverted 'V' curve of Synchronous motor
- 8. Determination of X_d and X_q of Synchronous machine by Slip test
- 9. Use of Synchronous motor as a Synchronous condenser
- 10. Loading of Synchronous motor by Brake test with rated excitation

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:


Term work shall consist of minimum six experiments. The distribution of marks shall be as follows:

Experiments Performance :10 marks Journal :10 marks Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Course Code	Course Name		g Scheme ct Hours)	Credits Assigned			
Code		Theory	Practical	Theory	Practical	Total	
EEL603	Microcontroller Lab (abbreviated as MC Lab)	-	2	-	1	1	

		Examination Scheme							
Course		Theory				I			
Code	Course Name	Interna	al Assess	ment	End	Term	Pract.		Total
Code		Test 1	Test 2	Avg.	Sem.	Work	and	Oral	
		1 est 1	Test 2	Avg.	Exam	WOIK	Oral		
EEL603	Microcontroller	_	_		_	25	25	20	50
LLLUUS	Lab	_				23	23		30

Course Objectives	To impart the programming knowledge of PIC 18 microcontroller.
	Students will be able
Course	 To program simple arithmetic and logical operations using PIC 18 microcontroller.
Outcomes	 To program timer and ADC of PIC 18 microcontroller for different applications. To interfece different IO devices with PIC 18 microcontroller.
	 To interface different IO devices with PIC 18 microcontroller.

Syllabus: Same as that of Course EEC604 Microcontroller and its applications **Suggested List of Laboratory Experiment:**

Basic Programming

- 1. Addition, subtraction
- 2. Logical operations
- 3. Multiplication and division
- 4. Sort even and odd numbers
- 5. Sort negative and positive numbers
- 6. Toggle the bits of ports

Timer programming

- 1. Generate square wave
- 2. Generate time delay
- 3. Counter program
- 4. Generate the PWM pattern

ADC programming

1. Analog to digital conversion

Peripheral Interface programming

- 1. LCD interface
- 2. LED interface
- 3. Stepper motor interface
- 4. DC motor interface
- 5. Serial port interface

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

The term work shall consist of minimum **eight** experiments based on PIC 18F microcontroller using embedded C language. The distribution of marks shall be as follows:

Experiments Performance :10 marks Journal :10 marks Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

	University of Mumbai									
Course Code	Course Name	Teaching Scheme (Contact Hours)		Credits Assigned						
Code		Theory	Practical	Theory	Practical	Total				
EEL604	Simulation Lab-II (abbreviated as Sim Lab - II)	-	2		1	1				

			Examination Scheme						
Course	Course		Theory				Practical		
Code	Course Name	Interna	al Assess	ment	End	Term	Pract.		Total
Code		Test 1	Test 2	Ava	Sem.	Work	and	Oral	
		1681 1	1681 2	Avg.	Exam	WOIK	Oral		
EEL604	Simulation Lab-II	-	-	-	-	25	-	25	50

Course Objectives	To impart knowledge on coding and simulation of electrical systems.
Course Outcomes	Students will be able
	 To code or simulate signal systems for its analysis.
	 To code or simulate power system for its analysis.
	 To code or simulate power electronics converter for its analysis.
	 To code or simulate electrical machines for its analysis.

Syllabus: Same as that of all core courses of semester VI.

Suggested List of Laboratory Experiment:

- 1. Algorithm for Basic operation on signal
- 2. Algorithm for Linear and Circular Convolution
- 3. Algorithm for step, impulse and frequency Response in Digital system
- 4. Algorithm for FFT for DFT Computation
- 5. Algorithm for Design of FIR System using Rectangular Window
- 6. Algorithm for Design of Butterworth Digital IIR System
- 7. Simulation of 1- phase full wave Rectifier with R-L Load
- 8. Simulation of Fault Analysis
- 9. Simulation of OC & SC Test of 3-phase IM.
- 10. Simulation of 1- phase full wave Controlled Rectifier with R-L Load

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum six experiments. The distribution of marks shall be as follows:

Experiments Performance :10 marks Journal :10 marks Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.