UNIVERSITYOFMUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Electronics Engineering

Second Year with Effect from AY 2017-18
Third Year with Effect from AY 2018-19
Final Year with Effect from AY 2019-20

As per Choice Based Credit and Grading System

with effect from the AY 2016-17

Co-ordinator, Faculty of Technology's Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Chairman's Preamble:

Engineering education in India is expanding and is set to increase manifold. Themajor challenge in the current scenario is to ensure quality to the stakeholders along with expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating the philosophy of outcome based education in the process of curriculum development.

As the Chairman, Board of Studies in Electronics Engineering of the University of Mumbai, I am happy to state here that, the Program Educational Objectives for Undergraduate Program were finalized in a brain storming session, which was attended by more than 40 members from different affiliated Institutes of the University. They are either Heads of Departments or their senior representatives from the Department of Electronics Engineering. The Program Educational Objectives finalized for the undergraduate program in Electronics Engineering are listed below;

- 1. To prepare the Learner with a sound foundation in the mathematical, scientific and engineering fundamentals
- 2. To motivate the Learner in the art of self-learning and to use modern tools for solving real life problems
- 3. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social responsibilities in the Learner's thought process
- 4. To prepare the Learner for a successful career in Indian and Multinational Organisations

In addition to Program Educational Objectives, for each course of the program, objectives and expected outcomes from a learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I strongly believe that even a small step taken in the right direction will definitely help in providing quality education to the major stakeholders.

Dr.Sudhakar S. Mande

Chairman, Board of Studies in Electronics Engineering, University of Mumbai

T.E. (Electronics Engineering) – Semester V

Course Code	Course Name		eaching Sche		Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX501	Microcontrollers and Applications	04			04			04
ELX 502	Digital Communication	04	-		04			04
ELX 503	Engineering Electromagnetics	04	-	@01	04		01	05
ELX 504	Design with Linear Integrated Circuits	04	02		04			04
ELX 505	Business Communication & Ethics	02	02#			02		02
ELXDLO501X	Department Level optional courses I	04	02		04			04
ELXL501	Microcontrollers and Applications Lab.					01		01
ELXL502	Digital Communication Lab.					01		01
ELXL503	Design with Linear Integrated Circuits Lab.					01		01
ELX DLOI50X	Department Level optional course-I Lab					01		01
	TOTAL	20	08	04	20	06	01	27

1 hour tutorial class-wise #02 hours batch-wise

					. 675	-					
		Examination Scheme – Semester V									
				Theory							
	Course Name	Internal Assessment (IA) End E					Exam Term	Oral			
Course Code		Test I	Test II	AVG.	Sem	Durati	Work	/Prac	Total		
			- 4		Exam	on					
					Marks	(Hours					
)					
ELX501	Micro-controllers and Applications	20	20	20	80	03			100		
ELX 502	Digital Communication	20	20	20	80	03			100		
ELX 503	Engineering Electromagnetics	20	20	20	80	03	25		125		
ELX 504	Design with Linear Integrated	20	20	20	80	03			100		
ELA 304	Circuits	1	20	20	00	03			100		
ELX 505	Business Communication & Ethics	-					50		50		
ELX DLO501X	Department Level Elective-I	20	20	20	80	03			100		
ELXL501	Micro-controllers and Applications						25	25	50		
ELALSUI	Lab.						23	23	30		
ELXL 502	Digital Communication Lab.						25		25		
ELXL 503	Design with Linear Integrated						25	25	50		
ELAL 303	Circuits Lab.						23	23	30		
ELXL	Department Elective I lab						25	25	50		
DLO501X	Department Elective Flau						23	23	50		
	Total	100	100	100	400	15	175	75	750		

Course Code	Department Level Optional Course I
ELXDLO5011	Database and Management System
ELXDLO5012	Digital Control system
ELXDLO5013	ASIC Verification
ELXDLO5014	Biomedical Instrumentation

T.E. (Electronics Engineering) – Semester VI

Course Code	Course Name	T	eaching Sche Contact Hou	me rs)		Credits As	ssigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX601	Embedded System and RTOS	04			04			04
ELX 602	Computer Communication Network	04			04			04
ELX 603	VLSI Design	04			04			04
ELX 604	Signals and systems	04		@01	04		01	05
ELXDLO502X	Department Level Optional courses II	04			04			04
ELXL601	Embedded System and RTOS Lab.		02			01		01
ELXL 602	Computer Communication Network Lab.		02			01		01
ELXL 603	VLSI Design Lab.		02		22	01		01
ELXLDLO601 X	Department Level Optional courses IILab.		02		X	01		01
	TOTAL	20	08	01	20	04	01	25

		Examination Scheme – Semester VI								
				Theor						
Course Code	Course Name	Internal Assessment (IA) End Exa Test I Test II AVG. Sem Dur					Term Work	Oral /Prac	Total	
		Test I	Test II	AVG.	Exam Marks	Duration (Hours)	WORK	/11ac	Total	
ELX601	Embedded System and RTOS	20	20	20	80	03			100	
ELX 602	Computer Communication Network	20	20	20	80	03			100	
ELX 603	VLSI Design	20	20	20	80	03			100	
ELX 604	Signals and systems	20	20	20	80	03	25	25	100	
ELXDLO602X	Department Level Optional courses II*	20	20	20	80	03			100	
ELXL601	Embedded System and RTOS Lab.						25	25	50	
ELXL 602	Computer Communication Network Lab.						25	25	50	
ELXL 603	VLSI Design Lab.						25	25	50	
ELXLDLO602 X	Department Level Optional Courses II*Lab.						25	25	50	
9	Total	100	100	100	400	15	125	125	750	

Course Code	Department Level Optional Course II
ELXDLO6021	Microwave Engineering
ELXDLO6022	Electronics Product Design
ELXDLO6023	Wireless Communication
ELXDLO6024	Computer Organization and Architecture

Course Code	(Course	Name		Tea	aching	schen	ne		Credi	t assigne	d	
ELX	Mion	4	uallaua		Theory	Pra	ct.	Tut.	Theory	Pract.	Tut.	To	tal
501		ocont Applica	rollers ations	and –	04				04			04	4
							I.	Exami	nation Sc	heme		'	
						Theor	y						
Course	Cou	ırse Na	ame		Interna			Dura	- Term		1	Pract.	1
Code					ssessmo	ent	End	tion (hrs)		Pract.	()ral	Oral	Fot al
				Test 1	Test 2	Avg.	sem						
ELX 501	Microcontrollers 20 &Applications			20	20	20	80	03		ä	5		100
Cour	se Cod	le			ı	C	ourse	Name	10			Credit	S
EL	X 501		Micro	ocontr	ollers a	nd App	olicati	ions				04	
Course	Objec	tives		-	oit micro 32-bit a			chitectu	re for sys	tem desig	n along v	vith expo	sure
Course	Outco	mes	1. 2. 3. 4.	Deve Desi	elop ass gn and i	embly l implem	angua ent 80	ige prog 951 base	chitecture. grammes for ed systems rtex-M3 ar	5.		roller.	
Module					-		Cont	ents				Ti	me
		8051	Micro	contr	oller Ar	chitect	(P)						
	1.1	Intro	duction	to mi	crocont	roller.							
1.	1.2	Over	view o	f MCS	51 fami	ly.							
	1.3	8051	archite	ectural	feature	S.							
	1.4		ory org										
							langu	iage pr	ogrammiı	ng			
2.	2.1				of 805							_ 1	0
/	2.2							ic, Logi	ical, Branc	ching.			
-	2.3		100		ge Prog								
1	3.1		0 1	_	rdware		_	ming					
3.	3.2	303	-		and prog grammi		ng.						0
3.	3.3				d progra							_ ^	·U
	3.4	- 400			gramm		•						
	3.1				& Appl		. S						
4.	4.1							splay, 1	6x2 gener	ric alphan	umeric	1	2

		LCD display.	
	4.2	Keyboard interfacing: 4x4 matrix keyboard.	
	4.3	Analog devices interfacing: 8-bit ADC/DAC, temperature sensor (LM35).	
	4.4	Motor interfacing: Relay, dc motor, stepper motor and servo motor.	
		ARM CORTEX-M3 Architecture	
	5.1	Comparison of CISC & RISC architectures, overview of ARM family.	
		ARM Cortex-M3 architecture, Programmer's model: Operation Modes and	4
5.	5.2	States, registers, special registers, Application Program Status Register-	12
		Integer status flags, Q status flag, GE bits.	
	5.3	Memory system: Features and memory map	
	5.4	Exceptions and Interrupts-Nested vectored interrupt controller	
	•	O Total	48

Text books:

- 1.M. A. Mazidi, J. C. Mazidi, Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems Using Assembly and C", Pearson Education, 2ndEdition.
- 2.Joseph Yiu, "The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.

Reference Books:

- 1. Kenneth J. Ayala, "The 8051 Microcontroller", Cengage Learning India Pvt. Ltd, 3rdEdition.
- 2. David Seal, "ARM Architecture", Reference Manual (2nd Edition), Publisher Addison Wesley.
- 3. Andrew Sloss, Dominic Symes, Chris Wright, "ARMSystem Developers Guide: Designing and Optimising System Software", Publisher Elsevier Inc. 2004.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total of 4 questions.
- 3. Question No.1 will be compulsory and based on the entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.
- 5. Weightage of marks, commensurate with the time allocated to the respective module.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX 502	Digital	4			4			04	
	Communication					ļ			

Subject	Subject Name		Examination Scheme							
Code			Tl	heory Marks		Term	Practical	Oral	Total	
		Inte	Internal assessment			Work				
		Test 1	Test	Ave. Of	Exam			-46		
			2	Test 1 and						
				Test 2			•_			
ELX 502	Digital	20	20	20	80	-	~ -		100	
	Communication									

Course Pre-requisite: ELX405 Principles of Communication Engineering

Course Objectives:

The objectives of this course are to:

- 1. Understand the typical subsystems of a digital communication system
- 2. Understand the significance of the trade-off between SNR and Bandwidth
- 3. Understand the effect of ISI in Baseband transmission of a digital signal.
- 4. Analyze various Digital modulation techniques
- 5. Identify the necessity of Source encoding and Channel encoding in Digital communication

Course Outcomes:

On successful completion of the course the students will be able to:

- 1. Comprehend the advantages of digital communication over analog communication and explain need for various subsystems in Digital communication systems
- 2. Realize the implications of Shannon-Hartley Capacity theorem while designing the efficient Source encoding technique.
- 3. Understand the impact of Inter Symbol Interference in Baseband transmission and methods to mitigate its effect
- 4. Analyze various Digital modulation methods and assess them based on parameters such as spectral efficiency, Power efficiency, Probability of error in detection
- 5. Explain the concept and need for designing efficient Forward Error Correcting codes.
- 6. Realize the areas of application of Digital communication.

Module No.	Unit No.	Topics	Hrs.
		Introduction to Digital communication system:	
	1.1	A typical Digital communication system, Advantages and disadvantages of Digital transmission, significance of digitization: PCM encoding of voice and image signals.	
1.	1.2	Concept of Probability Theory in Communication Systems: Random variables, Mean and Variance of Random variables and sum of random variables ,Definition with examples,	06
	1.3	Useful PDFs & CDFs: Gaussian, Rayleigh pdf & Rician Distribution, Binomial Distribution, Poisson Distribution, Central-Limit Theorem, Binary Synchronous Channel(BSC), development of Optimal receiver	
		Information Theory and Source Coding	
2.	2.1	Measure of Information, Entropy, Information rate, Channel capacity, Shannon – Hartley Capacity Theorem and its Implications.	06
	2.2	Shannon-Fano encoding, Huffman encoding, Code Efficiency & Redundancy.	
		Pulse Shaping for Optimum Transmission:	
	3.1	Line codes and their desirable properties, PSD of digital data	
3.	3.2	Baseband PAM transmission: Concept of Inter symbol interference(ISI),Raised Cosine filter, Nyquist Bandwidth. Concept of equalizer to overcome ISI	08
	3.3	Correlative coding: Duo-binary encoding and modified duo-binary encoding	
		Digital Modulation Techniques	
	4.1	Concept of Binary and M-ary transmission, Coherent and Non- Coherent reception, Power spectral density of Pass-band signal, Signal space Representation and Euclidian distance	
4.0	4.2	Pass Band Amplitude modulation & Demodulation: BASK, M-ary PAM, Digital Phase Modulation & Demodulation: BPSK, OQPSK, QPSK, M-ary PSK, QAM, Digital Frequency Modulation & Demodulation: BFSK, MSK, M-ary FSK	14
-	4.3	Comparison of all techniques based on Spectral efficiency, Power efficiency, Probability of error in detection	
	4.4	Optimal Reception of Digital Data : A baseband signal receiver and its Probability of error, The Optimum receiver, Matched filter, & its properties.	
5.0		Error Control codes:	10
J.U	5.1	Need for channel encoding, Concept of Error detection and correction, Forward Error	10

		correction					
	5.2	Linear block codes: Hamming Distance, Hamming Weight, Systematic codes ,Syndrome Testing					
	5.3	Cyclic codes; Generator polynomial for Cyclic codes, Systematic cyclic codes, Feedback shift register for Polynomial division					
	5.4	Convolution codes: Convolution encoder, Impulse response of encoder, State diagram, trellis diagram Representations	9				
		Applications of Digital communication					
	6.1	Satellite communication system: Satellite communication System model, Transponder, Satellite Orbits: LEO, MEO, GEO, Link analysis	06				
6.0	 Optical Communication system : Advantages of Optical communication ,Signal transmission in Optical fibres, Optical sources and Optical Detectors, Optical Digital Communication system. 						
	<u> </u>	Total	48				

Recommended Text Books:

- Simon Haykin, "Communication System", John Wiley And Sons ,4th Ed Taub Schilling & Saha, "Principles Of Communication Systems", Tata Mc-Graw Hill, Third Ed
- 3. B P Lathi & Zhi Ding," Modern Digital and Analog communication systems" -4E, Oxford University Press, Indian Ed.
- 4. R N Mutagi, "Digital Communication", Oxford University Press, 2nd Ed.

Reference Books:

- 1. Bernad Sklar,- "Digital communication", Pearson Education, 2nd Ed.
- 2. Simon Haykin, "Digital communication", John wiley and sons
- 3. PROAKIS & SALEHI, "Communication system Engineering", Pearson Education.
- 4. Anil K.Maini & Varsha Agarwal, "Satellite communications", Wiley publication.
- 5. Amitabha Bhattacharya, "Digital Communication", Tata Mcgraw Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject	Subject Name				Examination	n Scheme					
Code		Theory Marks				Term	Practical	Oral	Total		
		Inte	rnal as	ssessment	End Sem.	Work					
		Test 1	Test	Ave. Of	Exam						
			2	Test 1 and							
				Test 2							
ELX503	Electromagnetic	20	20	20	80				100		
	Engineering										
Subject	Subject Name				Examination	Scheme	9				
Code			T	heory Marks		Term	Practical	Oral	Total		
		Inte	rnal as	ssessment	End Sem.	Work					
		Test 1	Test	Ave. Of	Exam						
			2	Test 1 and							
				Test 2				,			
ELX503	Electromagnetic	20	20	20	80		-		100		
	Engineering										

Course Objectives:

- 1. To study correlation between electrostatics, steady magnetic field and time varying fields using Maxwell's equations for different media.
- 2. To calculate energy transported by means of electromagnetic waves from one point to another and to study polarization of waves.
- 3. To solve electromagnetic problems using different numerical methods.
- 4. To extend the students' understanding about the propagation of the waves of different types.
- 5. To understand the radiation concepts.

Course Outcomes:

After successful completion of the course, students will be able to:

- 1. Analyze the behaviour of electromagnetic waves in different media.
- 2. Evaluate various parameters of transmission lines and radiating systems.
- 3. Apply computational techniques to analyze electromagnetic field distribution.
- 4. Understand different mechanisms of radio wave propagation.

Module No.	Unit No.	Topics	Hrs.
		Basic Laws of Electromagnetic and Maxwell's Equations	
1.0	1.1	Coulomb's law, Gauss's law, Bio-Savart's law, Ampere's law, Poisson's and Laplace equations	10
	1.2	Maxwell's Equations: Integral and differential form for static and time varying fields and its interpretations	
	1.3	Boundary conditions for Static electric and magnetic fields	
		Electromagnetic Waves	
1	2.1	Wave Equation and its solution in partially conducting media(lossy dielectric), perfect	
		dielectrics, free space and good conductors, Skin Effect and concept of Skin depth	
2.0	2.2	Polarization of wave: Linear, Circular and Elliptical	12
2.0	2.3	Electromagnetic Power: Poynting Vector and Power Flow in free space, dielectric and	12
		conducting media	
	2.4	Propagation in different media: Behavior of waves for normal and oblique incidence	
		in dielectrics and conducting media, propagation in dispersive media	

		Computational Electromagnetics	
	3.1	Finite Difference Method (FDM): Neumann type and mixed boundary conditions,	
	3.1	Iterative solution of finite difference equations, solutions using band matrix method	
3.0		Finite Element Method (FEM): triangular mesh configuration, finite element	06
	3.2	discretization, element governing equations, assembling all equations and solving	
		resulting equations	
	3.3	Method of Moment (MOM): Field calculations of conducting wire	
		Fundamentals of Radiating Systems	
	4.1	Concept of retarded potentials, Lorentz Condition	
	4.2	Radiation from an alternating current element, half-wave dipole and quarter-wave	
4.0	4.2	monopole	06
		Antenna Parameters: Radiation Patterns, beam-width, Radiation intensity, directivity,	
	4.3	power gain, band-width, radiation resistance and efficiency, effective length and	
		effective area	
		Radio wave propagation	
	5.1	Types of wave propagation: Ground, space, and surface wave propagation	
	5.2	Space wave propagation: Effect of imperfection of earth, curvature of earth, effect of	
5.0	3.2	interference zone, Line of sight propagation, troposphere propagation and fading	06
	5.3	Sky wave propagation: Reflection and refraction of waves, structure of Ionosphere	
		Measures of ionosphere propagation: Critical frequency, Angle of incidence,	
	5.4	Maximum usable frequency, Skip distance, Virtual height	
		Transmission Lines	
		Transmission Lines Transmission Line parameters and equivalent circuit	
6.0	6.1		08
0.0		Transmission line equation and solution Secondary Parameters Propagation constant, characteristic impedance, reflection and	υð
	6.2	Secondary Parameters: Propagation constant, characteristic impedance, reflection and	
		transmission coefficient, Input Impedance, SWR, introduction to Smith chart	40
		Total	48

Recommended Books:

- 1. W.H. Hayt, and J.A. Buck, "Engineering Electromagnetics", McGraw Hill Publications, 7th Edition, 2006
- 2. R.K. Shevgaonkar, "Electromagnetic Waves", TATA McGraw Hill Companies, 3rd Edition, 2009
- 3. Edward C. Jordan and Keth G. Balmin, "Electromagnetic Waves and Radiating Systems", Pearson Publications, 2nd Edition, 2006
- 4. Matthew N.D. Sadiku, "Principles of Electromagnetics", Oxford International Student 4th Edition, 2007
- 5. J.D. Kraus, R.J. Marhefka, and A.S. Khan, "Antennas & Wave Propagation", McGraw Hill Publications, 4th Edition, 2011

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme				Credits Assigned					
		Theory	Practi	ical	Tutor	rial	Theory	TW/Pr	act	Tutorial	Total
ELX504	Design with Linear Integrated Circuits	04					04				04
						xami	ination S	cheme			-
		Theory Marks									
		Inte	rnal asse	nal assessme							
Subject Code	Subject Name	Test 1	Test 2	Te a	g. of est 1 and est 2		d Sem. Exam	Term Work	Pra	c. Oral	Total
ELX504	Design with Linear Integrated Circuits	20	20	2	20		80				100

Course Pre-requisite:

• Electronic Devices and Circuits I and II

Course Objectives:

- 1. To teach fundamental principles of standard linear integrated circuits.
- 2. To develop a overall approach for students from selection of integrated circuit, study its specification, the functionality, design and practical applications

Course Outcomes:

After successful completion of the course student will be able to

- 1. demonstrate an understanding of fundamentals of integrated circuits.
- 2. analyze the various applications and circuits based on particular linear integrated circuit.
- 3. select and use an appropriate integrated circuit to build a given application.
- 4. design an application with the use of integrated circuit

Module	Unit	Topics	Hrs.
No.	No.		
1	Fundan	nentals of Operational Amplifier	04
	1.1	Ideal Op Amp, characteristics of op-amp, op-amp parameters, high frequency	
		effects on op-amp gain and phase, slew rate limitation, practical determination of	
		op-amp parameters, single supply versus dual supply op-amp	
	1.2	Operational amplifier open loop and closed loop configurations, Inverting and	
/		non-inverting amplifier	
2	Applica	tions of Operational Amplifier	12
	2.1	Amplifiers: Adder, subtractor, integrator, differentiator, current amplifier,	
		difference amplifier, instrumentation amplifier and application of Op-Amp in	
1 ,	16-11.	Transducer Measurement System with detail design Procedure. Single supply dc	
		biasing techniques for inverting, non inverting and differential amplifiers.	
	2.2	Converters: Current to voltage converters, voltage to current converters,	
		generalized impedance converter	
	2.3	Active Filters: First order filters, Second order active finite and infinite gain low	
		pass, high pass, band pass and band reject filters.	

	2.4	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator,	
		Quadrature oscillator.	
3	Non-I	Linear Applications of Operational Amplifier	10
	3.1	Comparators: Inverting comparator, non-inverting comparator, zero crossing detector, window detector and level detector.	
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger with adjustable threshold levels.	
	3.3	Waveform Generators: Square wave generator and triangular wave generator with duty cycle modulation.	5
	3.4	Precision Rectifiers: Half wave and full wave precision rectifiers and their applications.	
	3.5	Peak Detectors, Sample & Hold Circuits, voltage to frequency converter, frequency to voltage converter, logarithmic converters and antilog converters	
4	Data	Converters	06
	4.1	Analog to Digital: Performance parameters of ADC, Single Ramp ADC, ADC using DAC, Dual Slope ADC, Successive Approximation ADC, Flash ADC, ADC0808/0809 and its interfacing	
	4.2	Digital to Analog : Performance parameters of DAC, Binary weighted register DAC, R/2R ladder DAC, Inverted R/2R ladder DAC, DAC0808 and its interfacing	
5	Specia	al Purpose Integrated Circuits	08
	5.1	Functional block diagram, working, design and applications of Timer 555.	
	5.2	Functional block diagram, working and applications of VCO 566, PLL 565, multiplier 534, waveform generator XR 2206, power amplifier LM380.	
6	Volta	ge Regulators	08
	6.1	Functional block diagram, working and design of three terminal fixed (78XX, 79XX series) and three terminal adjustable (LM 317, LM 337) voltage regulators.	
	6.2	Functional block diagram, working and design of general purpose 723 (LVLC, LVHC, HVLC and HVHC) with current limit and current fold-back protection, Switching regulator topologies, Functional block diagram and working of LT1070 monolithic switching regulator.	
		Total	48

Recommended Books:

- 1. Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Tata McGraw Hill, 3rd Edition.
- 2. William D. Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson, 4th Edition
- 3. D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, 4th Edition.
- 4. David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition.
- 5. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition.
- 6. R. P. Jain, "Modern Digital Electronics," Tata McGraw Hill, 3rd Edition.
- 7. Ron Mancini, "Op Amps for Everyone", Newnes, 2nd Edition.
- 8. J. Millman and A. Grabel, "Microelectronics", Tata McGraw Hill, 2nd Edition.
- 9. R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition.
- 10. J. G. Graeme, G. E. Tobey and L. P. Huelsman, "Operational Amplifiers- Design & Applications", NewYork: McGraw-Hill, Burr-Brown Research Corporation.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final internal assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory preferably objective type and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	e	Teacl	ning sche	me		Cre	edit assigne	d		
ELX	Database	T	heory	Pract.	Tut.	Theory	Pract.	Tut.	To	tal	
DLO5011	Management		04			04			04		
	Subject	·	Examination Scheme								
		Theory Marks						4			
Subject		Int	ternal a	assessment			Term	- 4	0		
Code	Name	Test 1	Test 2	Avg. Test 1 : Test	and	End Sem. Exam	Work	Practical	Oral	Total	
ELX DLO5011	Database Management System	20	20	20		80		_		100	

Prerequisite:

Basic knowledge of Data structure.

Course objectives:

- 1. Learn and practice data modelling using the entity-relationship and developing database designs.
- 2. Understand the use of Structured Query Language (SQL) and learn SQL syntax.
- 3. Apply normalization techniques to normalize the database
- 4. Understand the needs of database processing and learn techniques for controlling the consequences of concurrent data access.

Course outcomes: On successful completion of course learner will be able to:

- 1. Understand the fundamentals of a database systems
- 2. Design and draw ER and EER diagram for the real life problem.
- 3. Convert conceptual model to relational model and formulate relational algebra queries.
- 4. Design and querying database using SQL.
- 5. Analyze and apply concepts of normalization to relational database design.
- 6. Understand the concept of transaction, concurrency and recovery.

Module No.	Unit No.	Topics	Hrs.
		Introduction Database Concepts:	4
		Introduction, Characteristics of databases	
	1.1	File system v/s Database system	
1.0		Users of Database system	4
		Data Independence	
	1.2	DBMS system architecture	
		Database Administrator	
		Entity-Relationship Data Model	
2.0		The Entity-Relationship (ER) Model: Entity types: Weak and strong entity	8
	2.1	sets, Entity sets, Types of Attributes, Keys, Relationship constraints: Cardinality and Participation, Extended Entity-Relationship (EER) Model:	
		Generalization, Specialization and Aggregation	
		Relational Model and relational Algebra	
3.0	3.1	Introduction to the Relational Model, relational schema and concept of keys. Mapping the ER and EER Model to the Relational Model	8
	3.2	Relational Algebra – unary and set operations, Relational Algebra Queries.	-
		Structured Query Language (SQL)	
		Overview of SQL	-
	4.1	Data Definition Commands, Data Manipulation commands, Data Control	
4.0		commands, Transaction Control Commands.	12
1		Set and string operations, aggregate function - group by, having. Views in	
	4.2	SQL, joins, Nested and complex queries, Integrity constraints:- key constraints, Domain Constraints, Referential integrity, check constraints	
	4.3	Triggers	

5.0		Relational-Database Design	
	5.1	Pitfalls in Relational-Database designs, Concept of normalization Function Dependencies, First Normal Form, 2nd, 3rd, BCNF, multi valued dependencies, 4NF.	8
6.0		Transactions Management and Concurrency	6
	6.1	Transaction concept, Transaction states, ACID properties Concurrent Executions, Serializability – Conflict and View, Concurrency Control: Lock-based, Timestamp-based protocols.	12
	6.2	Recovery System: Failure Classification, Log based recovery, ARIES, Checkpoint, Shadow paging. Deadlock handling	
		Total	52

Text Books:

- 1. G. K. Gupta "Database Management Systems", McGraw Hill.
- 2. Korth, Slberchatz, Sudarshan, "Database System Concepts", 6th Edition, McGraw Hill
- 3. Elmasri and Navathe, "Fundamentals of Database Systems", 5th Edition, Pearson education.
- 4. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.

Reference Books:

- 1. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.
- 2. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley Publication.
- 3. Sharaman Shah, "Oracle for Professional", SPD.
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Nam	e	Teaching scheme Credit assigned					signed		
ELX	Digital Canta	Th	eory	Pract.	Tut.	Theo	ory Pr	act.	Tut.	Total
DLO5012	Digital Contr Systems		04			04	,			04
		•	Examination Scheme							-
Course	Course		Theory							
Code	Name	Intern	al Assess	sment	End	Dura	Term	Pract.	Oral	Total
		Test 1	Test 2	Avg	sem	tion (hrs)	work			
ELX	Digital							4		
DLO5012	Control Systems	20	20	20	80	03) '	100

Course Pre-requisite: ELX301: Mathematics III, ELX401: Mathematics IV, ELX406: Linear Control Systems

Course Objectives:

- 1. To introduce the discrete-time systems theory.
- 2. To introduce Z-transform methods in digital systems design.
- 3. To introduce modern state-space methods in digital systems design.

Course Outcomes: At the end of the course, the learner will have the ability to

- 1. Justify the need for digital control systems as well as understand sampling and reconstruction of analog signals.
- 2. Model the digital systems using various discretization methods and understand the concept of Pulse Transfer Function.
- 3. Analyze the digital control systems using classical techniques.
- 4. Analyze the digital control systems using modern state-space techniques.
- 5. Understand the concept of controllability and design the state feedback controllers.
- 6. Understand the concept of observability and design the state observers.

Module		Contents	Time
		Basics of discrete-time signals and discretization	
1.	0	Why digital control system? Advantages and limitations, comparison of continuous and discrete data control, block diagram of digital control system.	06
	1.2	Impulse sampling. Nyquist-Shannon sampling theorem, reconstruction of discrete-time signals (ideal filter)	00
1	1.3	Realizable reconstruction methods (ZOH and FOH). Transfer function of ZOH and FOH.	
		Modelling of Digital Control System	
	2.1	Discretization Approaches: Impulse invariance, step invariance, bilinear	
2.	2.1	transformation, finite difference approximation of derivative.	10
	2.2	Z-transform revision and its equivalence with starred Laplace transform.	
	2.3	The pulse transfer function (PTF) and general procedures to obtain PTF.	

		Stability Analysis and Controller Design via Conventional Methods					
	3.1	Mapping between s-plane and z-plane, stability analysis of digital systems					
	3.1	in z-plane. Effects of sampling frequency on stability.					
	3.2	Transient and steady-state analysis of time response, digital controller					
3.	3.2	design using root-locus method.	12				
	3.3	Digital controller design using bode plots, digital PID controller.					
		Realization of digital controllers: direct programming, standard					
	3.4	programming, series programming, parallel programming, ladder					
		programming,	- 40				
		State Space Analysis of Discrete-time Systems					
		Revision of continuous-time state-space models. Solution of continuous-					
	4.1	time state-space equation. Discretization of continuous-time state-space					
4.		solution and discrete-time state-space model.	08				
4.	4.2	Various canonical state-space forms for discrete-time systems and	Uð				
		transformations between state-space representations.					
	4.3	Solution of discrete-time state-space equation. Computation of state-					
	4.3	transition matrix (z-transforms, Caley-Hamilton theorem, Diagonalization).					
		Controllability and State Feedback Controller Design					
	5.1	Concept of controllability. Distinction between reachability and					
5.	3.1	controllability in discrete-time systems.	06				
	5.2	Digital controller design using pole-placement methods. (Similarity					
	3.2	transforms, Ackerman's formula).					
		Observability and Observer Design					
6.	6.1	Concept of observability. Distinction between detectability and					
	0.1	observability in discrete-time systems.	06				
	6.2	Observer design (prediction observer and current observer). Output					
	0.2	feedback controller design. Introduction to separation principle.					
	6.3	Dead-beat controller design, dead-beat observer design.					
Total			48				

Text books:

- 1. Ogata Katsuhiko, "Discrete-time Control Systems", Pearson, 2nd Edition, 1995.
- 2. **M. Gopal**, "Digital Control and State Variable Methods", Tata McGrow-Hill, 3rd Edition, 2003. **Reference Books:**
- 1. **Gene Franklin**, **J. David Powell**, **Michael Workman**, "Digital Control of Dynamic Systems", Addison Wesley, 3rd Edition, 1998.
- 2. B. C. Kuo, "Digital Control Systems", Oxford University press, 2nd edition, 2007.
- 3. Chi-Tsong Chen, "Linear System Theory and Design", Oxford University Press, USA, 1998.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus.

4. Remaining questions will be selected from all the modules.

Course Code	Course Name		Teachir	ng sche	me	Credit assigned					
ELX	ASIC	The	ory P	ract.	Tut.	Theo	ry Pra	ct.	Γut.	Total	
DLO5013			4			04				04	
L	Course Name	Examination Scheme									
		Theory							- 1		
Course Code		Internal Assessment			End	Dura tion	Term work	Pract.	Oral	Total	
		Test 1	Test 2	Avg	sem	(hrs)	WOLK				
ELX DLO5013	ASIC Verification	20	20	20	80	03		-		100	

Course Pre-requisite: EXC303: Digital Circuits and Design, ELXL304: Object Oriented Programming Methodology Laboratory, ELX 404: Digital System Design

Course Objectives

- 1. To introduce the learner System Verilog concepts for verification.
- 2. To introduce the learner advanced verification features such as practical use of classes, randomization, checking and coverage.
- 3. To highlight the significance of verification in VLSI industry.

Course Outcomes

At the end of the course, the learner will have the ability to

- 1. Demonstrate an understanding of programmable devices and verification methodologies.
- 2. Exploit new constructs in SV and advanced ASIC verification techniques.
- 3. Create test benches for digital designs in system verilog.
- 4. Carry out verification of design successfully using simulators

Module		Contents	Time
		Programmable Devices and Verilog	
	1.1	Programmable Devices: Architecture of FPGA, CPLD with an example of Virtex-	00
/1.		7 and Spartan -6 family devices	08
/	1.2	Verilog HDL: Data types, expressions, assignments, behavioural, gate and switch	
/	1.2	level modelling, tasks and functions	
1	70	Verification Basics and Data Types	
1		Verification Basics: Technology challenges, Verification methodology options,	
	2.1	Test bench creation, test bench migration, Verification languages, Verification IP	
2.		reuse, Verification approaches, Layered Testbench, Verification plans	12
		Data Types: Built in, Fixed size array, dynamic array, queues, associative array,	
	2.2	linked list, array methods, choosing a storage type, creating new types with typedef,	
	4.4	creating user defined structures, type conversion, enumerated types, constants,	
		strings, expression width	

		Procedural statements, test bench and Basic OOP	
3.	3.1	Procedural Statements and Routines: Procedural statements, tasks, functions and void functions, task and function overview, routine arguments, returning from a routine, local data storage, time values Connecting the Test bench and Design: Separating the test bench and design, the interface construct, stimulus timing, interface driving and sampling, connecting it all together, top level scope, program-module interactions	12
	3.2	Basic OOP: Class, Creating new objects, Object deal location, using objects, variables, class methods, defining methods outside class, scoping rules, using one class inside another, understanding dynamic objects, copying objects, public vs. local, building a test bench	
		Randomization and IPC	
4.	4.1	Randomization: Randomization in system Verilog, constraint details, solution probabilities, controlling multiple constraint blocks, valid constraints, In-line constraints, The pre-randomize and post-randomize functions, Random number functions, Constraints tips and techniques	10
	4.2	Threads and Inter process Communication: working with threads, disabling threads, inter process communication, events, semaphores, mailboxes, building a test bench with threads and IPC	
		Assertions and Functional Coverage	
5.	5.1	System Verilog Assertions: Assertions in verification methodology, Understanding sequences and properties	06
5.	5.2	Functional Coverage: Coverage types, strategies, examples, anatomy of a cover group, triggering a cover group, data sampling, cross coverage, generic cover groups, coverage options	
		Total	48

Text books:

- 1. **Chris Spear**, "System Verilog for Verification: A guide to learning the testbench language features", Springer, 3rd Edition.
- 2. **Janick Bergeron**, "Writing Testbenches Using System Verilog", Springer 2006.
- 3. Stuart Sutherland, Simon Davidmann, and Peter Flake, "System Verilog for Design:

A guide to using system verilog for hardware design and modeling", Springer, 2nd Edition.

Reference Books:

- 1. Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari and Lisa Piper, "SystemVerilog Assertions Handbook", VhdlCohen Publishing, 3rd edition
- 2. S Prakash Rashinkar, Peter Paterson and Leena Singh, "System on Chip Verification Methodologies and Techniques", Kluwer Academic, 1st Edition.
- 3. System Verilog Language Reference manual
- 4. Samir Palnitkar, "Verilog HDL: A guide to Digital Design and Synthesis" second edition, Pearson IEEE 1364-2001 compliant.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name		Teaching scheme				Credit assigned					
ELX	Biomedical		Theory Pra		Pract. Tut		Theory	Pract.	Tut.		Γotal	
DLO5014	Instrumentation	04 02		02		04				04		
		Examination Scheme										
		Theory										
Course Code	Course Name	Internal Assessment		End	Dura tion	Term work	Pract.	Oral	Pract. Oral	Total		
		Test 1	Test 2	Avg	sem	(hrs)	WOLK			Oran		
ELX	Biomedical	20	20	20	80	03	4		-		100	
DLO5014	Instrumentation		20		30						100	

Course Objectives

- 1. Introduce the learners to basic physiology and function of various systems in human body.
- 2. Introduce the learners to Diagnostic, Pathology, Life supportive equipment and latest imaging modalities in hospitals and healthcare industry.
- 3. Motivate learners to take up live projects with medical applications which will benefit the society at large.

Course Outcomes

- Have basic knowledge about the basic structure and functions of parts of cell, generation of action potential and various bioelectric potentials.
- Builds foundation of knowledge of physiological processes such as respiratory, cardiovascular, nervous and muscular systems in human body.
- Compare various methods used for measurement of various cardiac parameters such as blood pressure, blood flow, blood volume, cardiac output and heart sounds.
- Know the basic principle of analytical instruments and will have an over view of pathology laboratory equipments such as colorimeter, spectrophotometer, blood cell counter and auto-analyser.
- Have knowledge of life support equipments such as pacemaker, defibrillator, Heart lung machine, Haemodialysis machine and baby incubator along with safety limits of micro and macro shocks and understand the importance of electrical safety in hospital equipments.

Have knowledge of imaging modalities such as X-ray, CT, MRI and Ultrasound.

Module	900	Contents	Time
		Bio-Potential measurements	
1 -	11	Human Cell	0.6
1.	1.	Structure of Cell, Origin of Bio-potentials, Generation of Action Potentials,.	06
	1.2	Electrodes	
	1.2	Electrode-Electrolyte interface and types of bio-potential electrodes	
2.		Physiological Systems and Related Measurement	12
4.	2.1	Cardiovascular system	

		Structure of Heart, Electrical and Mechanical activity of Heart, ECG	
		measurements and Cardiac arrhythmias, Design of ECG amplifier, Heart	
		sounds measurement.	
		Nervous system	
		CNS and PNS: Nerve cell, Neuronal Communication, Generation of EEG	
	2.2	and its measurement. Normal and abnormal EEG, Evoked potential.	
		Electroencephalography: EEG measurements, Electrode-placement and	
		Block diagram of EEG machine	
		Respiratory system	40
	2.3	Physiology of respiration and measurements of respiratory related parameters	
		like respiration rate, Lung Volumes and capacities	0
		Muscular system	
	2.4	Typical Muscle fibre Action potential	*
		Electromyography: EMG measurement and block diagram.	
		Cardio-Vascular measurements	
	3.1	Blood Pressure- Direct and Indirect types.	
3.	3.2	Blood Flow- Electromagnetic and Ultrasonic type.	08
3.	3.3	Blood Volume- Plethysmography: Impedance, Capacitive and Photoelectric	
	3.3	type	
	3.4	Cardiac Output- Fick's method, Dye-dilution and Thermo-dilution type.	
		Analytical equipment	
	4.1	Beer Lambert's law, Principle of photometry.	
4.	4.2	Photo-colorimeter : Optical diagram	05
4.	4.3	Spectrophotometer: Optical diagram	
	4.5	Blood cell counter: Coulter's counter	
	4.6	Auto-analyser : Schematic diagram	
		Life-saving and Support equipment	
	5.1	Pacemaker- Types of Pacemaker, Modes of pacing and its applications.	
	5.2	Defibrillator-Types of fibrillations, Modes of operation, DC Defibrillators	
	3.2	and their applications.	
	5.3	Heart-Lung machine: System-flow diagram and its Application during	00
5.	0.5	surgery.	09
	5.4	Haemodialysis machine: Principle of operation and System-flow diagram.	
1	5.5	Baby Incubator and its applications	
		Patient safety	
1	5.6	Physiological effects of electrical current, Shock Hazards from electrical	
		equipments and methods of accident prevention	
		Imaging techniques	
6.	6.1	X-Ray- Generation, X-ray tube and its control, X-ray machine and its	08
U.	0.1	applications	
	6.2	CT Scan- CT Number, Block Diagram, scanning system and applications.	

6.3	MRI- Concepts and image generation, block diagram and its applications	
6.4	Ultrasound Imaging- Modes of scanning and their applications	
	Total	48

Text books:

- 1. Handbook of Biomedical Instrumentation: R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)

Reference Books:

- 1. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 2. Various Instruments Manuals.
- 3. Various internet resources.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name		Teac	hing sc	heme		Credit assigned					
ELXL	Microcontrollers	Theory Pra		Prac	et.	Tut.	Theory	Pract.	Tu	it.	Fotal	
501	& Applications Laboratory	0		02			!	01	01		01	
]	Examin	nation Scheme					
	Course Name	Theory										
Course Code		Internal Assessment			End	Dura tion	Term work	Pract.	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem	(hrs)	WUIK			Oral		
ELXL501	Microcontrollers &Applications Laboratory						25			25	50	

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 501 (Microcontrollers and Applications) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced. Practical and Oral exam will be based on the entire syllabus.

Suggested experiments:

- Maximum three experiments in X 51 assembly programming involving arithmetic, logical, Boolean, code-conversion etc operations.
- Minimum three experiments on interfacing of X 51 based system with peripheral IC's (ADCs, DACs etc.) peripheral actuators (relays, motors etc.) sensors (temperature, pressure etc.).

Suggested mini projects:

- Interfacing single LED/seven-segment display(SSD)/multiple-SSD with refreshing along-with some additional functional feature.
- Interfacing dot matrix LED for message display/ rolling message display.
- Interfacing IR emitter/receiver pair for time-period/speed calculations.
- Interfacing single key/4 key/4 X 4 matrix keyboard with some additional functional feature.
- Motors continuous, stepper, servo interfacing with speed(RPM) indication.
- Multi-function alarm clock using buzzer and LCD.
- Interfacing DAC and generating various waveforms.
- Ambient temperature indicator using LM 35 and 8-bit ADC 0808.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL 502	Digital	-	2		-	01		01		
	Communication							Ca		
	Laboratory							PA		

Subject	Subject Name				Examination Scheme							
Code			Tl	neory Marks		Term	Practical	Oral	Total			
		Internal assessment			End Sem.	Work						
		Test 1	Test	Ave. Of	Exam							
			2	Test 1 and								
				Test 2	46							
ELXL 502	Digital	-	-	-	-	25		25	50			
	Communication											
	Laboratory											

Laboratory Experiments:

Lab session includes Seven experiments and a Case study (Power point Presentation) on any one of the suggested topics.

- 1. The experiments will be based on the syllabus contents.
- 2. Minimum Seven experiments need to be conducted, out of which at least THREE should be software-based (Scilab, MATLAB, LabVIEW, etc).
- 3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work.

The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology.

("Beyond the scope of the syllabus".) Power point presentation should contain minimum of 15 slides and students should submit a report, (PPT+REPORT carry minimum of 10 marks

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Suggested experiments based on Laboratory setups:

- 1. Line codes
- 2. Binary modulation techniques: BASK,BPSK,BFSK
- 3. M-ary modulation techniques: QPSK ,QAM
- 4. MSK

Suggested experiments based on software:

- 1. Simulation of PDF& CDF of Raleigh / Normal/ Binomial Distributions
- 2. Simulation of Eye pattern for PAM signal
- 3. Source encoding: Huffman coding for Binary symbols
- 4. Simulation of Shannon-Hartley equation to find the upper limit on the Channel Capacity
- 5. Channel Encoding: Linear Block code: code generation, Syndrome
- 6. Cyclic code-code generation, Syndrome
- 7. Channel encoding: Convolutional code-code generation from generator sequences
- 8. Simulation of BPSK/QPSK/BFSK Modulation
- 9. Simulation of Duo-binary encoder-decoder
- 10. Plot and compare BER curves for Binary/ M-ary modulation schemes
- 11. Simulation of error performance of a QPSK/BPSK/MSK Modulator

Suggested topics for presentation:

- 1. DTH
- 2. Digital Multiplexing
- 3. Satellite Launching vehicles: PSLV, GSLV
- 4. Digital TV
- 5. Digital Satellite system: VSAT
- 6. RFID

Any other related and advanced topics.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL503	Design With Linear Integrated Circuits Laboratory	-	2		-	01	OS	01		

Course	Course		•		Examination S	cheme					
Code	Name			Theory Mai	rks	Term	Practical	Oral	Total		
		Int	ernal as	ssessment	End Sem.	Work	and				
		Test	Test	Avg. of	Exam		Oral				
		1	2	Test 1 and							
				Test 2							
ELXL503	Design With					25	25		50		
	Linear										
	Integrated										
	Circuits										
	Laboratory										

Term Work:

At least Six experiments based on the entire syllabus of Course ELX504 (Design with Linear Integrated Circuits) should be set to have well predefined inference and conclusion. Few computation/simulation based experiments are encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme.

A mini project based on the following topic or additional real time applications are encouraged. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments:

- 1. Experiment on op amp parameters
- 2. Experiment on design of application using op amp (Linear)
- 3. Experiment on implementation of op amp application e.g. oscillator

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

- 4. Experiment on non linear application (e.g. comparator) of op amp
- 5. Experiment on non linear application (e.g. peak detector) of op amp
- 6. Experiment on ADC interfacing
- 7. Experiment on DAC interfacing
- 8. Experiment on IC 555
- 9. Experiment on voltage regulator (Design)
- 10. Experiment on implementation of instrumentation system (e.g. data acquisition).

 The topic for the mini project in the course based on the syllabus of ELX505(Design with Linear Integrated Circuits)need to be application oriented.

Course Code	Course Name		Teaching scheme				Credit assigned					
	Database	The	ory P	ract.	Tut.	Theory	Pract. 1		t.	Total		
ELXL Management DLO5011 Systems Laboratory				02			01					
	Course Name	Examination Scheme										
Course		Theory						- 1				
Code		Internal Assessment			End	Term	Pract.	()ral	Pract.	Total		
		Test 1	Test 2	Avg	sem	work			/Oral			
ELXL DLO5011	Database Management Systems Laboratory					25		25		50		

At least **eight experiments** based on the entire syllabus of **ELXDLO5011** (**Data Base Management System**) should be set to have well-defined inference and conclusion. The experiments should be student-centric, and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) must perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Suggested List of Experiments

Expt.	Title of the Experiments							
1	To analyse the sampling and reconstruction of analog signal.							
2	To study various discretization approaches (Impulse Invariance, Step Invariance, Bilinear Transformation)							
3	Study of time domain transient and steady-state performance and performance specifications.							
4	Digital controller design using Root-locus method.							
5	Modelling of discrete-time systems in state-space and conversion to various canonical forms.							

6	Discrete-time system simulation in Simulink.
7	Study digital PID controller and its implementation in MATLAB and
,	Simulink.
8	Controllability and Observability of discrete-time systems.
9	Pole placement controller design for discrete-time systems.
10	Design of deadbeat controller and observer.

Course Code	Course Name		Teachin	ıg schei	me	Credit assigned					
ELXL	ASIC	The	ory P	Pract. Tut		Theory	Pract.	Tut.	Total		
DLO5012	Verification			02			01		01		
	Course Name	Examination Scheme									
Course		Theory						25.5			
Code		Internal Assessment			End	Term Pract.		()ral	act. Total		
		Test 1	Test 2	Avg	sem	work		70	ral		
ELXL DLO5012	ASIC Verification					25	-	25	50		

At least **eight** experiments based on the entire syllabus of **ELXDLO5013** (**ASIC Verification**) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

List of Experiments:

- 1. Implementation of 4:1 Multiplexer in Verilog with
 - a. Gate level Modeling
 - b. Structural/ Dataflow Modeling
 - c. Behavioral Modeling
- 2. Implementation of D flip flop (Asynchronous/ Synchronous/latch) using Verilog.
- 3. Experiment to practice creating dynamic arrays, associative arrays, and queues (Test a synchronous 8-bit x64K (512kBit) RAM).
- 4. Write a test plan and test bench for ALU Design.
- 5. Experiment to practice Procedural Statements and Routines using tasks, functions and do-while loops.
- 6. Create Interfaces to connect the Test bench and Design.
- 7. Threads & IPC: Implement the following counters
 - i. UP counter
 - ii. DOWN counter
 - iii. Divide by 2 count As threads. Use Fork join, fork join_none, fork_joinany.

- 8. Threads & IPC create dynamic processes (threads) and get familiar with interprocess communication using events, semaphore and mailb
- 9. Functional Coverage write cover groups and get familiar with the coverage repor Verification of FIFO

Course Code	Course Name		Teachin	ng schei	me	e Credit assigned			gned			
ELXL	Biomedical	The	ory P	ract.	Tut.	Theory	Pract.	Tu	ut.	Total		
DLO5013	Instrumentation			02			01	-	-	01		
	Course Name	Examination Scheme										
Course		Theory										
Code		Internal Assessment			End	Term	Pract.	Oral	Pract.	Total		
Couc		Test	Test	Avg	sem	work	Tract.	Orai	/Oral	Total		
		1	2	Avg								
ELXL DLO5013	Biomedical Instrumentation					25	-	25		50		

At least **eight** experiments based on the entire syllabus of **ELXDLO5014** (**Biomedical Instrumentation**) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Suggested List of Experiments

Expt.	Title of the Experiments
1	Study of X-ray Tubes
2	Design of active notch filter for line frequency
3	Design of general purpose amplifier for Bio potential measurement.
4	Design of Pacemaker using 555 timer.
5	Demonstration of Blood pressure measurement.
6	Demonstration of Electrocardiogram recording.

7	Demonstration of Electroencephalogram recording.
8	Demonstration of Electromyogram recording.
9	Demonstration of Photo-Colorimeter.
10	Demonstration of Spectrophotometer.
11	Demonstration of Auto-analyser.
12	Demonstration of Blood Cell counter.
13	Demonstration of D C Defibrillator (proto type).
14	Demonstration of Baby Incubator.
15	Demonstration of X Ray machine.
16	Demonstration of CT scanner.
17	Demonstration of MRI machine.
18	Demonstration of Ultrasound machine.

Course Code	Course Name	Teaching scheme Credit assigned						
ELX 601	Embedded	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Systems& Real Time Operating System	04	-		04			04

		Examination Scheme										
	Course Name		Th	eory					4			
Course Code		Internal Assessment				Du						
		Test 1	Test 2	Avg	End sem	ra tio n (hr s)	Term work	Pract.	Oral	Pract. / Oral	Total	
ELX 601	Embedded Systems& Real Time Operating System	20	20	20	80	03					100	

Course Objectives

To study concepts involved in embedded hardware and software for systems realisation.

Course Outcomes

At the end of the course, the learner will have the ability to

- 1. Identify and describe various characteristic features and applications of embedded systems.
- 2. Analyse and identify hardware for embedded systems implementation.
- 3. Analyse and identify various software issues involved in Embedded systems for real time requirements.
- 4. Analyse and explain the design life-cycle for embedded system implementation.

Module		Contents	Time
		Introduction to Embedded Systems	04
	1.1	Characteristics and Design metrics of Embedded system.	
1.	1.2	Real time systems: Need for Real-time systems, Hard-Soft Real-time	
	1.2	systems.	
	1.3	Challenges in Embedded system Design: Power, Speed and Code density.	
		Embedded Hardware	12
	2.1	Embedded cores, Types of memories, Sensors (Optical encoders,	
	2.1	Resistive) and Actuators (Solenoid valves, Relay/switch, Opto-couplers)	
	2.2	Power supply considerations in Embedded systems: Low power features-	
2.	2.2	Idle & Power down mode, Sleep mode, Brown-out detection.	
2.		Communication Interfaces: Comparative study of serial communication	
	2.3	interfaces (RS-232, RS-485), I2C, CAN, USB (v2.0), Bluetooth, Zig-Bee.	
		Selection criteria of above interfaces.	
		(Frame formats of above protocols are not expected)	
		Embedded Software	14
	3.1	Program Modelling concepts: DFG,FSM,UML	
		Embedded C-programming concepts (from Embedded system point of	
	3.2	view): Data types, Modifiers, Qualifiers, Functions, Macros, Interrupt	
		service routine, Device drivers.	
		Real-time Operating system: Need of RTOS in Embedded system software	
		and comparison with GPOS, Foreground/Background processes, Interrupt	
3.		latency, Task, Task states, Multi-tasking, Context switching, Task	
- 4	3.3/	scheduling, Scheduling algorithms-Rate Monotonic Scheduling, Earliest	
	1 2	Deadline First (with numericals), Inter-process communication: Semaphore,	
		Mailbox, Message queues, Event timers, Task synchronisation- Shared	
1		data, Priority inversion, Deadlock.	
,	10	Memory Management Introduction to uCOS II PTOS: Study of Kernel structure of uCOS II	
	3.4	Introduction to μCOS II RTOS: Study of Kernel structure of μCOS II, μCOS II functions for Initialisation, Task creation, Inter-task	08
	J. ¬	communication and Resource management, Memory management	00
			04
4.		System Integration , Testing and Debugging Methodology	

	4.1	Embedded Product Design Life-Cycle (EDLC)	
	4.2	Hardware-Software Co-design	
	4.3	Testing & Debugging: Boundary-scan/JTAG interface concepts, Black-Box testing, White-Box testing, Hardware emulation, Logic analyser.	
		Case Studies	06
5.	5.1	Soft Real-time: Automatic Chocolate Vending machine using µCOS II RTOS- Requirements study, Specification study using UML, Hardware architecture, Software architecture	C
	5.2	Hard Real-time: Car Cruise-Control using µCOS II RTOS- Requirements study, specification study using UML, Hardware architecture, Software Architecture	

Text books:

- 1.Dr. K.V. K. K. Prasad, "Embedded Real Time System: Concepts, Design and Programming", Dreamtech, New Delhi, Edition 2014.
- 2.Jean J. Labrosse, "MicroC / OS-II The Real-Time Kernel", CMP Books, 2011, Edition 2nd.
- 3. Rajkamal, "Embedded Systems: Architecture, Programming and Design", McGraw Hill Education (India) Private Limited, New Delhi, 2015, Edition 3rd.
- 4. SriramIyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata McGraw Hill Publishing Company ltd., 2003.

Reference Books:

- 1.DavidSimon, "An Embedded Software Primer", Pearson, 2009.
- 2.Jonathan W. Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Publisher Cengage Learning, 2012 Edition 3rd.
- 3.AndrewSloss, DomnicSymes, Chris Wright, "ARM System Developers Guide Designing and Optimising System Software", Elsevier, 2004
- 4.FrankVahid, Tony Givargis, "Embedded System Design A Unified Hardware/Software Introduction", John Wiley & Sons Inc., 2002.
- 5.Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, New Delhi, 2009.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total of 4 questions.
- 3. Question No.1 will be compulsory and based on the entire syllabus.

Programme Structure for Bachelor of Engineering (B.E.) – Electronics Engineering (Rev. 2016)

- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.
- 5. Weightage of marks, commensurate with the time allocated to the respective module.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX 602	Computer	4	2		4			04	
	Communication				40				
	and Networks			- 4					

Subject	Subject Name	Examination Scheme								
Code			Theory Marks				Practical	Oral	Total	
		Inter	rnal as	sessment	End Sem.	Work				
		Test 1	Test	Ave. Of	Exam					
			2	Test 1 and						
				Test 2						
ELX 602	Computer	20	20	20	80	-			100	
	Communication	Ca								
	and Networks		7							

Course Pre-requisite: ELX405 Principles of Communication Engineering

ELX502 Digital Communication

Course Objectives:

The objectives of this course are to:

- 1. Introduce networking architecture and protocols
- 2. Understand the various layers and protocols in the TCP/IP model
- 3. Recognize different addressing schemes, connecting devices and routing protocols
- 4. Select the required protocol from the application layer protocols

Course Outcomes:

On successful completion of the course the students will be able to:

- **1.**Demonstrate understanding of networking concepts and required protocols
- 2. Analyze the various layers and protocols of the layered architecture
- 3. Evaluate different addressing schemes, connecting devices and routing protocols
- 4. Appreciate the application layer protocols

Module No.	Unit No.	Topics	Hrs.
1.	110.	Introduction to Network Architectures, Protocol Layers, and Service models	06
	1.1	Uses of computer networks. Topologies, LAN, MAN, WAN, Network topologies,	- 00
		Addressing: Physical / Logical /Port addressing, Protocols and Standards.	
	1.2	Protocol Architecture: Need of layered protocol architecture, Layers details of OSI,	
		Protocol Layers and Their Service Models	
	1.3	TCP/IP Model: Protocol suite, Comparison of OSI and TCP/IP	
2.		Physical Layer	08
	2.1	Transmission Media: Guided media like Coaxial, fiber, twisted pair, and Wireless media, Transmission Impairments. Interconnecting Devices: Hub, Bridges, Switches, Router, Gateway	
	2.2		_
	2.2	Data communication model : DTE, DCE, RS-232D Interface, Null Modem,	
		Multiplexing: FDM, Synchronous TDM, Statistical TDM, ADSL, xDSL, Cable	

		Modem	
3.		Data Link Control	08
	3.1	Data link services: Framing, Flow control, Error control, ARQ methods, Piggybacking	
	3.2	High Level Data Link Control (HDLC): HDLC configurations, Frame formats, Typical frame exchanges.	
	3.3	Medium Access Control Protocols: ALOHA, Slotted ALOHA, CSMA, CSMA/CD	9
4.		Network Layer	14
	4.1	Switching : Switched Communication networks, Circuit switching Networks, , Circuit switching Concepts, Packet switching Principles: Virtual circuit switching and Datagram switching	
	4.2	Routing in Packet Switching Networks: Characteristics, Routing strategies, Link state Routing versus Distance vector Routing. Least-Cost Routing Algorithms: Dijkstra's Algorithm, Bellman Ford Algorithm.	
	4.3	Internet Protocol: Principles of Internetworking: Requirements, Connectionless Operation Internet Protocol Operation: IP packet, IP addressing, subnet addressing, IPv4, ICMP, ARP, RARP IPv6 (IPv6 Datagram format, comparison with IPv4, and transition from IPv4 to IPv6)	
5.		Transport Layer & Application Layer	08
· ·	5.1	Connection –oriented Transport Protocol Mechanisms: Transmission Control Protocol (TCP): TCP Services, TCP Header format, TCP three way handshake, TCP state transition diagram. User datagram Protocol (UDP)	00
	5.2	Congestion: Effects of congestion, Congestion control methods, Traffic management, Congestion control in Packet switching Networks	
	5.3	Application layer Protocols : HTTP, FTP, DNS,SMTP, SSH	
6.		LANs. High speed Ethernet	04
	6.1	LAN Protocol architecture, LAN topologies, Hub, Bridges, Virtual LANs	
		Traditional Ethernet and IEEE 802.3 LAN Standard: Ethernet protocol, Frame structure, Physical layers,	
-	6.2	High Speed Ethernet: Fast Ethernet, Gigabit Ethernet & 10- Gigabit Ethernet	
1	M	Total	48

Recommended Text Books

- 1. William Stallings, "Data and Computer communications", Pearson Education, 10th Edition.
- 2. Behrouz A. Forouzan, "Data communication and networking", McGraw Hill Education, Fourth Edition.
- 3. Alberto Leon Garcia, "Communication Networks", McGraw Hill Education, Second Edition University of Mumbai, B. E. (Electronics Engineering), Rev 2016 47

Reference books:

- 1. S. Tanenbaum, "Computer Networks", Pearson Education, Fourth Edition.
- 2. J. F. Kurose and K. W. Ross ,"Computer Networking: A Top-Down Approach", Addison Wesley, 5th Edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELX 603	VLSI Design	4	2		4			04

Subject	Subject Name		Examination Scheme									
Code			T	heory Marks		Term	Practical	Oral	Total			
	Inte	Internal assessment End Sem.			Work							
	_ \	Test 1	Test	Ave. Of	Exam							
			2	Test 1 and								
/				Test 2								
ELX 603	VLSI Design	20	20	20	80	-			100			

Prerequisite Subject:

• ELX302: Electronics Devices and Circuits- I

• ELX304: Digital Circuit Design

• ELX404: Digital System Design

• ELX504: Design with Linear Integrated Circuits

Course Objectives:

- 1. To study MOS based circuit realization using different design styles
- 2. To highlight the fundamental issues in data path and system level design

Course Outcomes: After successful completion of the course student will be able to ...

- 1. Demonstrate a clear understanding of choice of technology, scaling, MOS models and system level design issues
- 2. Design and analyze MOS based inverters.
- 3. Design MOS based circuits with different design styles.
- 4. Design semiconductor memories, adders and multipliers.

Unit No.	Details	Teaching Hours
1	Technology Trend:	
	1.1 Technology Comparison: Comparison of BJT and MOS technology	06
	1.2 MOSFET Scaling: Types of scaling, Level 1 and Level 2 MOSFET Models,	00
	MOSFET capacitances	
2	MOSFET Inverters: 2.1 Types of MOS inverters: Active and passive load and their comparison. 2.2 Circuit Analysis of MOS Inverters: Static Analysis resistive and CMOS inverter: Calculation of all critical voltages and noise margins. Design of symmetric CMOS inverter. Dynamic Analysis of CMOS inverter: Calculation of rise time, fall time and propagation delay 2.3Logic Circuit Design: Analysis and design of 2-I/P NAND,NOR and complex	10
	Boolean function using equivalent CMOS inverter for simultaneous switching.	
3	 MOS Circuit Design Styles: 3.1 Design Styles: Static CMOS, pass transistor logic, transmission gate, Pseudo NMOS, C²MOS, Dynamic, Domino, NORA and Zipper. 3.2Circuit Realization: Basic gates, SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX using above design styles. 	10
4	Semiconductor Memories: 4.1 SRAM: 6T SRAM, operation, design strategy, leakage currents, read/write circuits, sense amplifier. 4.2DRAM: 1T_DRAM, operation modes, leakage currents, refresh operation, physical design. 4.3 ROM Array: NAND and NOR PROM, Nonvolatile read/write memories-classification and programming techniques	08
5	Data Path Design: 5.1 Adder: CLA adder, MODL, Manchester carry chainand high speed adders like carryskip, carry select and carry save. 5.2 Multipliers and shifter: Array multiplier and barrel shifter	04
6	VLSI Clocking and System Design: 6.1Clocking: CMOS clocking styles, Clock generation, stabilization and distribution 6.2Low Power CMOS Circuits: Various components of power dissipation in CMOS, Limits on low power design, low power design through voltage scaling 6.3I/O pads and Power Distribution: ESD protection, input circuits, output circuits, simultaneous switching noise, power distribution scheme	10

6.4Interconnect: Interconnect delay model, interconnect scaling and crosstalk.

Text and Reference Books

- 1.Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition.
- 2. John P. Uyemura, "Introduction to VLSI CIRCUITS AND SYSTEMS", Wiley India Pvt. Ltd.
- 3. Jan M. Rabaey, Anantha Chandrakasan and BorivojeNikolic, "*Digital Integrated Circuits: A Design Perspective*", Pearson Education, 2nd Edition.
- 4. Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.
- 5. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 3rd Edition.
- 6. Debaprasad Das, "VLSI Design", Oxford, 1st Edition.
- 7. Kaushik Roy and Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley, Student Edition.
- 8. David A Hodges, Horace G Jackson and Resve A Saleh, "Analysis and Design of Digital Integrated Cicuits", TMH, 3rd Edition

Additional Study Material & e-Books

- 1.Douglas A Pucknell, Kamran Eshraghian, "Basic VLSI Design", Prentice Hall of India Private Ltd.
- 2. Samir Palnitkar, "A Guide to Digital Design and Synthesis", Pearson Education

Subject	Subject	Te	aching Sch	eme		Credits Assigned			
Code	Name	3							
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX604	Signals and	04		#01	04		01	05	
	Systems	0							

	Subject	Subject			I	Examinatio	on Scheme					
	Code	Name		Tl	heory Marks		Term	Practical	Oral	Total		
1			In	ternal a	ssessment	End	Work					
			Test	Test	Ave. Of	Sem.						
	. 9		1	2	Test 1 and	Exam						
4					Test 2							
	ELX604	Signals and	20	20	20	80	25	-	-	125		
1		Systems										

#Class wise

Course Objectives:

- 1. To provide a comprehensive coverage of continuous time and discrete time Signals and Systems.
- 2. To introduce various time domain and frequency domain methods for analysis of Signals and systems.

Course Outcomes:

After successful completion of this course student will be able to

- 1. Differentiate between continuous time and discrete time Signals and Systems.
- 2. Understand various transforms for time domain to frequency domain conversion
- 3. Apply frequency domain techniques for analysis of LTI systems
- 4. Apply frequency domain techniques for analysis of continuous and discrete signals

Module	Unit	Topics	Hrs.
No.	No.		
1.		Continuous and Discrete Time Signals	8
	1.1	Mathematical Representation and Classification of CT and DT signals,	
		Orthogonality of signals	
	1.2	Arithmetic operations on the signals, Time Shifting, Time scaling, Time Reversal	
	1.0	of signals	
2	1.3	Sampling and Reconstruction, Aliasing effect	
2	2.1	Continuous and Discrete Systems	8
	2.1	Mathematical Representation and classification of CT and DT systems	
	2.2	Properties of LTI systems, impulse and step response.	
	2.3	Use of convolution integral, convolution sum and correlation for analysis of LTI	
	2.4	systems Proportion of convolution into and convolution over	
3	2.4	Properties of convolution integral and convolution sum	- (
3		Frequency Domain Analysis of Continuous Time System using Laplace Transform	6
	3.1	Concept of Complex frequency, Region of Convergence for Causal, Non-causal	
	3.1	and Anti-causal systems, Poles and Zero of transfer function	
	3.2	Unilateral Laplace Transform	
	3.3	Analysis and characterization of LTI system using Laplace Transform: Impulse	
	3.3	and Step Response, Causality, Stability, Stability of Causal system	
4		Frequency Domain Analysis of Discrete Time System using Z Transform	12
-	4.1	Need for Z transform, definition, properties of unilateral and bilateral Z	12
		Transform, mapping with s plane, relationship with Laplace transform	
	4.2	Z transform of standard signals, ROC, poles and zeros of transfer function,	
		Inverse Z transform	
	4.3	Analysis and characterization of LTI system using Z transform: impulse and step	
		response, causality, stability, stability of causal system	
	4.4	System realization-Direct, Direct Canonic, Cascade and Parallel forms	
5		Frequency Domainc Analysis of Continuous Signals	6
	5.1	Frequency Domain Analysis of periodic non-sinusoidal signals	
	5.2	Frequency Domain Analysis of aperiodic Signals-Introduction, Properties of	
	0.2	Fourier Transform, Fourier Transform based amplitude and phase response of	
		standard signals, Relationship with Laplace and Z transform, Energy Spectral	
6		Frequency Domain Analysis of Discrete Signals	8
/	6.1	Discrete Time Fourier Series, Evaluation of DTFS coefficients, Magnitude and	
/			
	1	Phase Spectrum of Discrete time periodic signals, Power Spectral Density	
	6.2	Discrete Time Fourier Transform – Concept of discrete time signal in frequency	
		domain, definition of DTFT, determination of magnitude and phase functions using	
1	15413	DTFT	
	1	Total	48
	7	<u> </u>	

Text Books:

- 1. Tarun Kumar Rawat, "Signals and Systems", Oxford UniversityPress 2016.
- 2. A. NagoorKani, "Signals and Systems", Tata McGraw-Hill Education

Reference Books:

- 1. John Proakis and DimitrisMonolakis, "Digital Signal Processing", Pearson Publication, 4th Edition
- 2. Alan V. Oppenheim, AlanS. Willsky, and S.Hamid Nawab, "Signals and Systems", 2nd Edition, PHIlearning, 2010.
- 3. B. P. Lathi, "Linear Systems and Signals", Oxford University Press,

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name	To	eaching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX	Microwave	04		#01	04		01	05	
DLO6021	Engineering								

Subject	Subject		Examination Scheme										
Code	Name		Tl	heory Marks		Term	Practical	Oral	Total				
		In	ternal a	ssessment	End	Work			69				
		Test	Test	Ave. Of	Sem.			- 4					
		1	2	Test 1 and	Exam		20.00						
				Test 2			• .		×				
ELX6021	Microwave	20	20	20	80	25			125				
	Engineering												

Prerequisites: Knowledge of basic Engineering Electromagnetics

Course Objectives:

- 1. To introduce the students to various concepts of Microwave Engineering.
- 2. To teach the students the working principles and applications of different microwave devices.

Course Outcomes (CO):

After successful completion of the course, students will be able to:

- 1. Understand the importance and applications of microwaves.
- 2. Explain the process of generation and amplification of microwaves.
- 3. Analyse the electromagnetic field distribution in various microwave components.
- 4. Measure various microwave parameters.

Module	Contents	Hours								
1	Introduction to microwave communication	4								
A //										
	1.1 Microwave spectrum and bands									
	1.2 Limitations of conventional circuit theory concepts at microwave									
	frequencies									
11/2/18	1.3 Applications of microwaves									
	1.4 Limitations of conventional vacuum tubes at microwave frequencies									
2	Generation and amplification of microwaves	12								
	2.1 Two cavity Klystron amplifiers: Construction, Process of velocity									
	modulation and bunching , Apple gate diagram									
	Output power and efficiency, Applications									
	2.2 Reflex Klystron:									
	Construction ,Process of velocity modulation and bunching									

	Apple gate diagram, Output power and efficiency	
	Applications	
	2.3 Cylindrical Magnetron Construction and working principle	
	Hull cut-off magnetic equation, Cyclotron angular frequency	
	Applications	
	2.4 Traveling wave tube : construction and working principle	
	applications	
	2.5 numerical examples based on the above topics	
3	Waveguides:	10
	3.1 Rectangular and circular waveguides	- 40
	3.2 solution of Maxwell's equation for distribution of fields in the	
	waveguides	
	3.3 characteristic equation	
	3.4 Dominant and degenerate modes	
	3.5 group and phase velocities	· ·
	3.6 cut-off frequency	
	3.7 numerical examples based on the above topics	
4	Waveguide components and analysis:	12
	4.1 Definition and significance of s-parameters	
	4.2 Properties of s-parameters	
	4.3 Construction, working principle and s-matrix representation of cavity	
	resonators, waveguide attenuators, waveguide phase shifters,	
	waveguide multiport junctions, E-plane and H-plane Tees, Magic Tee,	
	Hybrid Ring, direction couplers	
	4.4 Microwave ferrite components:	
	Faraday rotation isolator, Circulator, Gyrator	
	Paraday Totation Isolator, Circulator, Gyrator	
	Numerical examples based on the above topics	
	rumerical examples based on the above topics	
5	Microwave solid state devices:	5
	5.1Principle of operation and characteristics of:	
	Gunn Diode, TRAPATT and IMPATT diodes, Microwave	
	Transistors	
	5.2 Introduction to Strip Lines	
6	Microwave Measurement:	5
	Measurement of	
19 de		
	6.1 Power	
	6.2 Attenuation	
16-11)	6.3 Frequency	
12	6.4 VSWR	
	6.5 Cavity Q	
	6.6 Impedance	
	1 F	1

Text Books:

- 1. "Microwave Devices and Circuits" by Samuel Liao, PHI
- 2. "Microwave circuits and Passive Devices" by M L Sisodia, G S Raghuvanshi, New Age International(P) Ltd

Reference Books:

- 1. "Electronic Communication Systems" by Kennedy, Davis, 4e TMH
- 2. "Microwave Engineering: Passive Circuits" by Peter Rizzi, PHI
- 3. "Foundations for Microwave Engineering" by Robert E Collin, 2e, John Wiley
- 4. "Basic Microwave Techniques & Laboratory Manual" by M L Sisodia, G S Raghuvanshi, 2001 New Age International(P) Ltd
- 5. Microwave Engineering, Annapurna Das, TMH\

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

		Teaching Scheme Credits Assigned				S Assigned			
Course Code	Course Name	Theory	Practical	Tutoria l	Theory	TW/Practic al	Tutorial	Total	
ELX DLO6022	Electronic Product Design	04			04			04	

				Ex	xamination Schem	e	0	
Course	Course Name		Th	eory Marks		Term	Oral &	
Code		Interna	al Assessm	ent (IA)	End Semester	Work	Practical Practical	Total
		Test I	Test II	Average	Examination			
ELX	Electronic Product	20	20	20	80			100
DLO6022	Design (EPD)			30				- 30

Rationale: The aim of this course is to enable students to gain practical experience & nurture their creativity in electronic product design & the objective is to provide students with a clear understanding of the practical design problems of the electronic products at an introductory level. With this course, students are expected to become familiar with the concept of designing a product as per the requirements (non-technical) & given specifications (technical), component tolerances, production constraints, safety requirements & EMC standards.

Course Objectives:-

- 1. To understand the stages of product (hardware / software) design & development
- 2. To learn different considerations of analog, digital & mixed circuit design
- 3. To be acquainted with methods of PCB design & different tools used for the same
- 4. To be aware of the importance of testing in product design cycle
- 5. To gain knowledge about various processes & importance of documentation

Course Outcomes :-

At the end of the course, students should gain the ability to:-

- CO-1: Design electronic products using user-centered designing processes
- CO-2: Identify & recognize essential design & production procedures of electronic products
- CO-3:- Implement a prototype for meeting a particular requirement / specification
- CO-4:- Demonstrate problem solving & troubleshooting skills in electronic product design
- CO-5:- Prepare the relevant set of design documentation & present it as a case study

Modul e No.	Topics	Hour s				
	INTRODUCTION TO ELECTRONIC PRODUCT DESIGN					
1	Man-machine dialog & industrial design, user-centered design, elements of successful design, cognition, ergonomics, packaging & factors; design for manufacture, assembly & disassembly wiring, temperature, vibration & shock; safety, noise, energy coupling, grounding, earthing, filtering & shielding	06				
	HARDWARE DESIGN & TESTING METHODS					
2	Design process, identifying the requirements, formulating specifications, design specifications, system partitioning, functional design, architectural design, functional model v/s architectural model, prototyping, performance & efficiency measures, formulating a test plan, writing all the specifications, test procedures & test cases, design reviews, module debug & testing – black box testing, white box testing, grey box testing	10				
	SOFTWARE DESIGN & TESTING METHODS					
3	Types of software, the waterfall model of software development, models, metrics & software limitations, risk abatement & failure prevention, software bugs & testing, good programming practice, user interface, embedded & real-time software	10				
	PRINTED CIRCUIT BOARD (PCB) DESIGNING					
4	Fundamental definitions, standards, routing topology configuration, layer stack up assignment, grounding methodologies, aspect ratio, image planes, functional partitioning, critical frequency & bypassing, decoupling; design techniques for ESD protection, guard-band & guard-rings	08				
	PRODUCT DEBUGGING & TESTING					
5	Steps of debugging, the techniques for troubleshooting, characterization, electromechanical components, passive components, active components, active devices, operational amplifier, analog-to-digital conversion, digital components, inspection & testing of components, process of simulation, prototyping & testing, integration, validation & verification, EMI & EMC issues	08				
	THE DOCUMENTATION PROCESS					
6	Definition, needs & types of documentation, records, accountability & liability, audience, steps in preparation, presentation & preservation of documents, methods of documentation, visual techniques, layout of documentation, bills of materials, manuals – instructional or operating manual, service and maintenance manual, fault finding tree, software documentation practices	06				
1-6	TOTAL	48				

Recommended Books:-

- 1. R. G. Kaduskar & V. B. Baru, Electronic Product Design, 3rd edition, Wiley India 2. Kim Fowler, Electronic Instrument Design, 2nd edition, Oxford University Press
- 3. Robert J. Herrick, PCB Design Techniques for EMC Compliance, 2nd edition, IEEE Press
- 4. G. C. Loveday, Electronic Testing & Fault Diagnosis, 4th edition, A. H. Wheeler Publishing
- 5. James K. Peckol, Embedded Systems A Contemporary Design Tool, 1st edition, Wiley Publication
- 6. J. C. Whitaker, The Electronics Handbook, CRC Press

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.
- 5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELX	Wireless	4	2		4			04
DLO6023	Communication							

Subject	Subject Name				Examination	Schem	6		
Code			Tl	heory Marks		Term	Practical	Oral	Total
		Internal assessment		End Sem.	Work				
		Test 1	Test	Ave. Of	Exam		0 (
			2	Test 1 and					
				Test 2		11		•	
ELX	Wireless	20	20	20	80	-	7		100
DLO6023	Communication					A A			

Course Objectives:

The objectives of this course are to:

- 1. To introduce the Concepts of basic Cellular communication systems, mobile Radio propagation
- 2. To understand the various Cellular processes such as handoff strategies, interference, Trunking theory
- 3. To study the features and services of 2G cellular technologies: GSM and CDMA
- 4. To study the features of evolving technological advances in 2G, 3G & 4G Cellular systems.

Course Outcomes:

After successful completion of the course, students will be able to:

- 1.Understand the concepts of basic cellular system, frequency reuse, channel assignment
- 2. Understand the fundamentals radio propagation, Path loss and comprehend the effect of Fading.
- 3. Acquire the Knowledge about multiple access technologies and different of different spread spectrum techniques.
- 4. Acquire the Knowledge about overall GSM cellular concept and analyse its services and features
- 5. Comprehend the features of CDMA technology
- 6. Analyse the evolution of cellular technology from 2G to 4G Cellular systems .

Module	Unit	Topics	Hrs.
No.	No.		
1.		Concept of Cellular Communication	08
	1.1	Introduction to cellular communications, Frequency reuse, Channel assignment strategies	
	1.2	Cellular Processes: Call setup, Handoff strategies, interference and system capacity,	
		Co-channel Interference reduction with the use of Directional Antenna	
	1.3	Traffic Theory: Trunking and Grade of service, Improving Coverage and capacity in	
		Cellular systems: Cell splitting, Sectoring, Micro-cell Zone concept	
2.		Mobile Radio Propagation	08

	2.1	Introduction to Dadio wave appropriate European appropriate with the day had	
	2.1	Introduction to Radio wave propagation, Free space propagation model, the three basic	
		Propagation mechanisms, The Ground Reflection (two-ray) model, Practical Link	
		budget design using Path-Loss models:Log-distance Path –loss model.	
	2.2	Small scale Multipath Propagation: Factors influencing small scale fading, Doppler	
		shift, Parameters of mobile multipath channels,	
	2.3	Types of small scale fading, Fading effects due to Doppler spread, Fading effects due	
		to Multipath Time delay spread, Raleigh and Rician distributions	
3.0		Multiple access techniques & Spread spectrum Modulation	08
	3.1	Multiplexing and Multiple Access: Time Division Multiple Access, Frequency Division	
		Multiple Access, Spread-spectrum multiple-access:Code Division Multiple Access	
	3.2	Spread spectrum Modulation : Need for and concept of spread spectrum modulation,	
		PN-sequence generation, properties of PN-sequence, Gold sequence generation, Direct-	
		sequence SS, Frequency-hopping SS,	
4.0		GSM	12
	4.1	GSM network architecture, Signalling protocol architecture, Identifiers, Physical and	
		Logical Channels, Frame structure, Speech coding, Authentication and security, Call	
		procedure, Hand-off procedure, Services and features	
5.0		IS-95	06
	5.1	Frequency and channel specifications of IS-95, Forward and Reverse CDMA channel,	
		Packet and Frame formats, Mobility and Resource management	
6.0		Evolution from 2G to 4G	06
	6.1	GPRS, EDGE technologies, 2.5G CDMA-One cellular network, W-CDMA (UMTS),	
		CDMA2000, LTE, Introduction to 5G Networks	
	•	Total	48

Recommended Books:

- 6. Theodore Rappaport, "Wireless Communications: Principles and Practice, 2nd Edition, Pearson Publication
- 7. ITI Saha Misra, "Wireless Communication and Networks: 3G and Beyond", Publication
- 8. Vijay Garg, "IS-95 CDMA and cdma 2000: Cellular/PCS System Implementation", Pearson Publication.

Reference Books:

- 1. T.L Singal, "Wireless Communication", Tata McGraw Hill, 2010
- 2. Upena Dalal, "Wireless Communication", Oxford University Press, 2009
- 3. Andreas F Molisch, "Wireless Communication", John Wiley, India 2006.
- 4. Vijay Garg, "Wireless communication and Networking", Pearson Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Course Code	Course Name	Tea	ching sche	me	Credit assigned					
ELX	Computer	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
DLO6024	Organization and Architecture	04			04			04		

					E	xamina	tion Scheme				
Course	Course	Theory								Pract	
Code	Name	Internal Assessment		En	Dura	Term	rm Pract		Pract	Total	
Couc	Name	Test 1	Test 2	Av	d	tion	work	•	Oral	Oral	Total
		1 est 1	1 est 2	g	sem	(hrs)				Oral	
ELX DLO602 4	Computer Organizatio n and Architecture	20	20	20	80	03					100

Course Objectives	 To introduce the learner to the design aspects which can lead to maximized performance of a Computer. To introduce the learner to various concepts related to Parallel Processing 3.To highlight the various architectural enhancements in modern processors.
Course Outcomes	At the end of the course, the learner will have the ability to
	 Define the performance metrics of a Computer Explain the design considerations of Processor, Memory and I/O in Computer systems Explain the advantages and limitations of Parallelism in systems Explain the various architectural enhancements in modern processors

Module		Contents	Time				
		Introduction to Computer Organization	[06]				
	1.1	Fundamental Units of a Computer	01				
1.	1.2	Introduction to Buses	01				
	1.3	Number Representation methods- Integer and Floating-point, Booth's Multiplier, Restoring and Non-Restoring Division	03				
	1.4	Basic Measures of Computer Performance - Clock Speed, CPI, MIPs and MFlops	01				
		Processor Organization and Architecture	10				
2.	2.1	CPU Architecture, Register Organization, Instruction cycle, Instruction Formats	04				
2.	2.2	Control Unit Design- Hardwired and Micro-programmed Control: Vertical and Horizontal Micro-Instructions, Nano-programming	04				
	2.3	Comparison between CISC and RISC architectures	02				
		Memory Organization	12				
	3.1	Classification of Memories-Primary and Secondary Memories, RAM (SRAM and DRAM) and ROM (EPROM, EEPROM), Memory Interleaving					
3.	3.2	Memory Hierarchy, Cache Memory Concepts, Mapping Techniques, Write Policies, Cache Coherency (* Numerical Problems expected)	06				
	3.3	Virtual Memory Management-Concept, Segmentation , Paging, Page Replacement policies	04				
		Input/Output Organization	06				
4.	4.1	Types of I/O devices and Access methods, Types of Buses, Bus Arbitration	03				
	4.2	Expansion Bus Concept, PCI Bus	03				
		Parallelism	06				
5.	5.1	Introduction to Parallel Processing Concepts, Flynn's classification, Amdahl's law	02				
	5.2	Pipelining - Concept, Speedup, Efficiency, Throughput, Types of Pipeline hazards and solutions (* Numerical Problems expected)	04				
1		Architectural Enhancements	08				
6.		Superscalar Architectures, Out-of-Order Execution, Multi-core processors, Clusters, Non-Uniform Memory Access (NUMA) systems, Vector Computation, GPU	08				

Text books:

1. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.

2. C. Hamacher, Z. Vranesic and S. Zaky, "Computer Organization", McGraw Hill, 2002.

Reference Books:

- 1. J.P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 1998.
- **2.** B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", Second Edition, Tata McGraw-Hill.
- **3.** D. A. Patterson and J. L. Hennessy, "Computer Organization and Design The Hardware/Software Interface", Morgan Kaufmann, 1998.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learner need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name		Teach	ing	scheme	2		Cred	lit assig	gned	
	Embedded	Theo	ory	Pract.		Tut.	Theory	Pract.	Tu	ıt.	Total
ELXL 601	Systems& Real Time Operating System Laboratory			02				01	-	-	01
	Course Name		,	Гhес) rv	Exan	mination Scheme				
Course Code		Internal Assessment Test Tes		nt A	End sem	Dura tion (hrs)	Term work	Pract.	Oral	Pract. / Oral	Total
		1	t 2	v g				X	7		
ELXL 601	Embedded Systems& Real Time Operating System Laboratory						25	1		25	50

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 601 (Embedded System & Real Time Operating System) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus. Suggested Experiments:

- Simulation experiments using KeilC–cross complier to: evaluate basic C program for X-51 assembly; evaluating various C data types; evaluating and understanding iterative C constructs translated into x51's assembly; evaluating and understanding interrupt implementation.
- Simulate and understand working of μCOS-II functions using example programs from recommended text, "MicroC / OS-II The Real-Time Kernel", by Jean J. Labrosse.
- Porting of µCOS-II on X-51/AVR/CORTEX M3 platform.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)		Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL 602	Computer	-	2		-	01		01		
	Communication						1	6		
	and Networks							7		
	Laboratory									

Subject	Subject Name				Examination	n Schem	e		
Code			Tl	heory Marks		Term	Practical	Oral	Total
		Inte	rnal as	sessment	End Sem.	Work			
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
ELXL 602	Computer	-	-	-	- 📣	25		25	50
	Communication					-			
	and Networks								
	Laboratory								

Laboratory Experiments:

Lab session includes Seven experiments and a Case study (Power point Presentation) on any one of the suggested topics.

- 1. The experiments will be based on the syllabus contents.
- 2. Minimum **Seven experiments** need to be conducted, out of which **at least Four Experiments** should be software-based (C/C++, Scilab, MATLAB, LabVIEW, etc).
- 3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work. The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology. ("Beyond the scope of the syllabus".)

Power point presentation should contain minimum of 15 slides and students should submit a report (PPT+Report)carry minimum of 10 marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested List of experiments:

- 1. Study of transmission media and interconnecting devices of communication networks.
 - 2. Implementation of serial transmission using RS232
 - 3. Implementing bit stuffing algorithm of HDLC using C/C++
 - 4. Implementation of Routing protocols using C/C++
 - 5. Study of NS2 simulation software
 - 6. Implementation of TCP/UDP session using NS2
 - 7. Implementation of ARQ methods using NS2
 - 8. Study of WIRESHARK and analyzing Packet using WIRESHARK
 - 9. Study and implementation of IP commands
 - 10. Study of GNS software and implementation of routing protocols using GNS

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ELXL 603	VLSI Design Laboratory		02			01		01	

		Examination Scheme										
			T	heory								
Course	Course Name	Internal Assessment				Dur	T			Division		
Code		Test 1	Test 2	Av g	End sem	a tion (hrs	Term work	Pra ct .	Oral	Pract. / Oral	Total	
ELXL 603	VLSI Design Laboratory						25	_		25	50	

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 603 (VLSI Design) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus.

Suggested Experiments:

MOSFET Scaling using circuit simulation software like Ngspice Static and transient performance analysis of various inverter circuits Implementation of NAND and NOR gate using various logic design styles Design and verification of CMOS Inverter for given static and transient performance Implementation of ROM, SRAM, DRAM Interconnect analysis

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ELXL DLO6021	Microwave Engineering Laboratory		02			01	1	01	

		Examination Scheme										
			T]	heory						K		
Course	Course	Internal Assessment			Dur	70		•	Pract.			
Code	Name	Test 1	Test 2	Av g	End sem	a tion (hrs	Term work	Pract.	Oral	/ Oral	Total	
ELXL DLO6 021	Microwave Engineering Laboratory						25	\\\		25	50	

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELXDLO 6021 (Microwave Engineering) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus.

Course Code	Course N	ame	me Teaching scheme					Credit assigned					
			ign 0		ct.	Tut.	Theory	Pract.	Tut	. '	Total		
ELXL DLO6022	Electronic Product De	esign			2			01					
			Examination Scheme										
	Course Name		7	Theory	7								
Course Code			Internal Assessment			Dura tion	Term	Dwoot	Owol	Pract.	Total		
		Test	Test 2	Avg	End sem	(hrs)	work	Pract.	Oral	Oral	Total		
ELXL DLO6022	Electronic Product Design						25			25	50		

At least **Six** experiments based on the entire syllabus of **ELXDLO6022** (Electronic Product Design) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Lab session includes six experiments plus one presentation on case study.

Suggested Experiments:

- 1. Experiment based on Ground and Supply bounce
- 2. PCB design steps involved in product design
- 3. Simulation based on use of Simulator software
- 4. Working of an Emulator in Design step
- 5. Role of Pattern Generator in Design step
- 6. Debugging of the digital circuit based on Logic Analyzer
- 7. Application of the Spectrum analyzer
 - 8. Demonstration of usefulness of the Arbitrary waveform generator
 - 9. Setup for EMI and EMC test
 - 10. Experiment based on calibration of the product.

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)		Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL	Wireless	-	2		-	01		01		
DLO6023	Communication									
	Laboratory									

Subject	Subject Name		-						
Code			Tl	neory Marks		Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work	0 6		
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and		15		•	
				Test 2					
ELXL	Wireless	-	-	-	-	25		25	50
DLO6023	Communication								
	Laboratory								

Laboratory Experiments:

Lab session includes seven experiments and a Case study(Power point Presentation)on any one of the suggested topics.

Note:

- 1. The experiments will be based on the syllabus contents.
- 2. Minimum seven experiments need to be conducted.(Scilab, MATLAB, LabVIEW, NS2/NS3 etc can be used for simulation).
- 3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work.

The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology.

("Beyond the scope of the syllabus".)

Power point presentation should contain minimum of 15 slides and students should submit a report, (PPT+Report) carry minimum of 10 marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
ELVI	Computer	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ELXL DLO6024	Organization and Architecture		02			01		01	

	Course Name	Examination Scheme										
		Theory										
Course		Internal Assessment				Dur	Том			Pract.		
Code		Test 1	Test 2	Av g	End sem	a tion (hrs	Term work	Pract.	Oral	/ Oral	Total	
ELXL DLO60 24	Computer Organization and Architecture						25		2	25	50	

At least six experiments based on the entire syllabus of ELX DLO6024 (Computer Organization and Architecture) should be set to have well-defined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Additionally, a Seminar on IEEE/ACM paper focusing on key areas of research in Computer Architecture/Organization to be part of the term-work which is duly graded. Suggested List of Experiments:

Expt. No.	Title of the Experiments
1	Implementation of Booth's Algorithm (using VHDL)
2	To create a control store for micro-programmed control unit (using VHDL)
3	Using a cache simulator, calculate the cache miss-rate for various mapping schemes
4	Implement various page replacement policies (LRU, FIFO,LFU)
5	Program to detect the type of hazard (RAW,WAR,WAW) for a set of instructions
6	Using a performance analyzer tool, extract various performance metrics