Q. P. Code: 34333

[Total Marks: 75]

(15M)

(2 ¹/₂ Hours)

- N.B. 1) All questions are compulsory.
 - 2) Figures to the right indicate marks.
 - 3) Illustrations, in-depth answers and diagrams will be appreciated.

4) Mixing of sub-questions is not allowed.

Q.1 Attempt All(Each of 5Marks)

- (a) Multiple Choice Questions.
 - The set of all linear combinations of vectors v₁, v₂,..., v_n is called the of the vectors.
 - a) Convex b) concave c) span d) combination.
 - ii) Nullity of T is the dimension of _____ of T.a) Kernel b) Image c) Rank d) none of the above.
 - iii) | A- λ I | = 0 is called _____equation.
 a) Quadratic b) characteristics c) cubic d) Null.
 - iv) In GF (2), 1+1+0+1 =_____. a) 0 b) 1 c) 3 d) 2.
 - v) For any homogenous system_____is a trivial solution.a) Zero b) non zero c) one d) none of the above.

(b) Fill in the blanks.

(Spare, Unique, Unit, $\sqrt{45}$, Inner product)

- i) A vector whose norm is one is called ______vector.
- ii) A vector space together with inner product is called_____space.
- iii) If most of the element of a matrix have zero value is called ______ matrix.
- iv) The absolute value of 3+6i =_____.
- v) Inverse of a matrix is_____.
- (c) Define.
 - i) Dot product.
 - ii) Gatois field.
 - iii) Eigen Value.
 - iv) Orthogonal Complement.
 - v) Dimension.

Page **1** of **3**

Paper / Subject Code: 78905 / Linear Algebra Using Python

Q. P. Code: 34333

Q. 2 Attempt the following (Any THREE)

- (a) Find the Square root of 21 – 20i, where $i = \sqrt{-1}$
- (b) Consider the following system of equation and find the nature of solution without solving it.
 - i) $x_1 + x_2 = 4$ $2x_1 + 2x_2 = 8$
 - ii) $x_1 + x_2 = 3$ $x_1 - x_2 = -1$

(C) Solve the following system by backward substitution method

 $x_1 - 3x_2 - 2x_3 = 7$ $2x_2 + 4x_3 = 4$ $10x_3 = 20$

- (d) Let W_1 and W_2 are two subspaces of V then prove that $W_1 \cap W_2$ is also a subspace of V where V is a vector space on IR.
- (e) Write a python Program for rotating a complex number $Z = 2+3i by 180^{\circ}$

(f) Which of the following is a set of generators of IR^3

- $\{(4, 0, 0), (0, 0, 2)\}$ i)
- ii) $\{(1,0,0),(0,1,0),(0,0,1)\}$

Q. 3 Attempt the following (Any THREE)

Find the null space of matrix [2 6 8]

(a)

6 5 3 4 7

- Let f: $U \rightarrow V$ is a linear transformation then show that kerf = {0} iff f is injective. (b)
- Find the co-ordinate representation of vector v = (0, 0, 0, 1) in terms of the (c) vectors [1,1,0,1], [0,1,0,1] and [1,1,0,0] in GF (2).
- Find the angle between the two vectors a = (2,3,4) and b=(1, -4,3) in IR^3 . (d)
- (e) Consider Subspace $U_1\{(x, y, w, z) : x - y = 0\}$ and

 $U_2\{(x, y, w, z) : x = w, y = z\}$ Find a basis and dimension of

i) ii) U_2 iii) $U_1 \cap U_2$. U_1

If V and W are two subsets of a vector space V such that U is a subset of (f) W then show that W^0 is a subset of U^0 where U^0 , W^0 are annihilator of U and W respectively.

O.4 Attempt the following (Any THREE)

- Let u and v are orthogonal vectors then prove that for scalars a,b. (a) $||au + bv||^2 = a^2 ||u||^2 + b^2 ||v||^2$
- (b)Explain Internet Worm.
- (c) Write a program in python to final gcd (240,24)

Page 2 of 3

581CB1C47F198344C80C845C6F974304

(15M)

(15M)

(15)

Q. P. Code: 34333

(d) Solve the following system by Gaussian elimination method.

y -z = 3-2x + 4y -z = 1 -2x + 5y - 4z = -2

- (e) Find the orthonormal basis for subspace IR⁴ whose generators are $v_1 = (1, 1, 1, 1), v_2 = (1, 2, 4, 5), v_3 = (1, -3, -4, -2)$ Using Gram Schmidt orthogonali sation Method.
- (f) Let a = (3,0), b = (2,1) find vector in span {*a*} that is closet to b is $b^{\parallel a}$ and distance $||b^{\perp a}||$.

Q. 5 Attempt the following (Any THREE)

(a) Let $T : |R^3 \rightarrow |R^2$ be a linear map defined by f(x,y,z) = (x+2y-z, x+y-2z)Verify Rank T + Nullity T = 3.

(b) Fill the table.

Vector space	Basis	Dimension
{0}		
IR ²	{(1,0),(0,1)}	
$P_2(x)$		3
M ₂ (IR)		
IR	502 8 Q X X 8 8 8 9 4 4 4 4 5 8 9 0	
	5. 5. 0 () () () () () () () () () (

(c)(

- Find eigen values and eigen vectors of $\begin{bmatrix} -1 & 3 \\ 1 & -1 \end{bmatrix}$
- (d) Let S be a subset of vector space V. Prove that S^{\perp} is a subspace of V.
- (e) Check whether the following set {(1,1,0), (0,1,1), (1,1,1)} is linearly Independent or not.

(15)