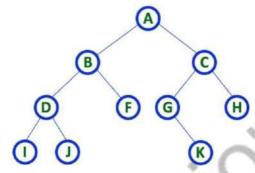
		$(2\frac{1}{2} \text{ Hours})$	[Total Marks: 75
	N.B. 1) All questions are compulsor	y.	
	2) Figures to the right indicate	marks.	
	3) Draw suitable diagrams and illustrations wherever necessary.		
	4) Mixing of sub-questions is r	ot allowed.	
Q. 1	Attempt All the Questions		
A)			
A)			
1)	bound		
	a) lower	b) upper	_()'
	c) both lower and upper	d) None of these	G
ii)	is an unambiguous specification of how to solve a class of problems.		
	a) program	b) instruction	6.
	c) algorithm	d) none of these	
iii)	BST is the abbreviation for	. 0	, "
	a) Binary Search Tree	b) Binary Search Time	
	c) Binary Solution Technique	d) None of these	
iv) The matching algorithm on a sequence of length runs intime			ne
,	a)	b)	
	c)	d)	
v)	A path that starts and ends on the sa	ame vertex is called	
,	a) cycle	b) tree	
	c) spanning tree	d) none of these	
B)	Fill in the blanks(rapidly, longest, shortest, slowly, child, parent, tree, linked-list) (5M)		
i)	Leaf nodes represent the nodes that do not have any		
ii) iii)	Pre-order and Post-order traversals are operations associated withdata structure. Prim's algorithm is an example ofpath problem.		
iv)	The sequential search runs intime.		
v)	The n-log-n function grow a little m		1.
,			
C)	Explain the following terms in one	e or two lines	(5M)
i)	Big-Omega		
ii)	<u> </u>		
iii)	Linear search		
iv)	Binary tree		
v)	Selection algorithms		
Q.2	Attempt the following: (Any THR	EE)	(15M)
A	What is Asymptotic analysis of an a	lgorithm? Explain.	

3150F6F44EE3EDBAC04E1D1C55B2377B

66341

Page **1** of **2**


Paper / Subject Code: 78901 / Fundamentals of Algotrithm

- B What is divide-and –conquer method of problem solving? Given an example where this method is used.
- C Write a note on method of guessing and confirming.
- D Write the algorithm for printing lines of a file in reverse order.
- E Write a note on commonly used logarithms and summations in algorithmic analysis.
- F Explain how to compare algorithms. Give example.

Q.3 Attempt the following: (Any THREE)

(15M)

- A What is an AVL tree? Explain its characteristics.
- B What is a traversal of a tree? Compute any two such traversals for the following tree.

- C Briefly describe the concept of topological sorting. Give example.
- D Explain with suitable example the adjacency list and adjacency matrix representations of a graph. Give example.
- E What is a shortest path problem? Explain any one algorithm for finding shortest path in a graph.
- F Define graph. Differentiate between directed and undirected graph. Give examples.

Q.4 Attempt the following: (Any THREE)

(15M)

- A What is breadth-first traversal of a tree? Give the algorithm for performing a breadth-first traversal on a tree.
- B Write a note on algorithm design techniques.
- C Briefly explain the Longest Common Subsequence problem.
- D Explain any two problems that can be solved using dynamic programming.
- E What are the elements of greedy algorithm? Explain.
- F Explain the concept of Classification by Implementation Method.

Q.5 Attempt the following: (Any THREE)

(15M)

- A Write a note on median-of-median algorithm.
- B Explain the structure of threaded binary tree? Give suitable example to illustrate the concept.
- C Define algorithm. State its essential characteristics.
- D Write a note on Master theorem. Give example.
- E Write a note on partition based selection algorithms.
- F Write a note on upper and lower bounds of algorithm.

66341 Page **2** of **2**