Q. P. Code: 35762

(2 ½ Hours) [Total Marks: 75

- **N.B.** 1) **All** questions are **compulsory**.
 - 2) **Figures** to the **right** indicate marks.
 - 3) Draw suitable diagrams and illustrations wherever necessary.
 - 4) Mixing of sub-questions is not allowed.

Q. 1	Attempt	t All the	Questions
------	---------	-----------	-----------

A)	Choose the correct alternative		(5M)	
i)	Ω-notation provides an asymptotic	bound.		
	a) upper	b) both upper and lower		
	c) lower	d) none of these		
ii)	Which of the following statement is tru			
	i. Quicksort, like merge sort, is based on the divide-and-conquer paradigm.			
	ii. ω -notation to denote a lower bound that is asymptotically tight.			
	a) i-true, ii-false	b) i-true, ii-true		
	c) i-false, ii-true	d) i-false, ii-true		
iii)	In binary search trees, tree we the values in its left subtree and those in	valk prints the key of the root of a subtree between in its right subtree.		
	a) postorder	b) preorder		
	c) inorder	d) none of these		
iv)	Which of the following holds true for Prims algorithm?			
	i. The edges in the set A always form a single tree.			
	ii. It follows a greedy strategy.			
	a) Only i	b) Both i and ii		
	c) Only ii	d) Neither i nor ii		
v)	An acyclic graph containscycle	28. 200		
	a) no	b) many		
, SS	c) one	d) none of these		
B)	Fill in the blanks:		(5M)	
% (2)	{ lower, halts, upper, moves, recurrence	ce, efficient, $\Omega(n^2)$, $\Theta(n^2)$ }		
i)	O-notation describes abound.	y		
ii)	An algorithm is said to be correct if, fo output.	or every input instance, itwith the correct		
iii)	An algorithm that is asymptotically mo	orewill be the best choice for all but very		
	small inputs.	that describes a function in terms of its value on		
iv)	smaller inputs.	that describes a function in terms of its value on		
	The worst case running time of inserti	on cont is		

Q. P. Code: 35762

C) Explain the following terms in one or two lines (5M)i) Rate of growth Running time of Algorithm iii) Correctness of Algorithm iv) Expression Trees v) Weighted graphs **Q.2 Attempt the following: (Any THREE)** (15M)A Define Algorithm. Explain why analysis of algorithm important? B Briefly describe the Master method for solving recurrences of the form T(n) = aT(n/b) + f(n)C How do we compare two algorithms? Explains D Write a note on Method of Guessing and Confirming. E Briefly describe the "Big-Omega" and "little-omega" in algorithmic analysis. F Write a note on divide-and-conquer approach. Q.3 **Attempt the following: (Any THREE)** (15M)A What are the type of binary tree? Explain any two. B Write a note on binary tree traversal. C What is an AVL tree? Explain. D Define Graph. What are its applications? Explain. E What is a minimum spanning tree? Explain with suitable example. F Write a note on median-of-median algorithm. Q.4 Attempt the following: (Any THREE) (15M)A What is greedy technique? What are its advantages and disadvantages? B Write a note on computer algorithms that are based on divide-and-conquer programming approach. What are the advantages of divide and conquer based algorithms? C Write a note on Master theorem. D Briefly describe Dynamic Programming Strategy. Also give the Steps of Dynamic Programming Approach. E Briefly describe the longest common subsequence (LCS) problem. F State the examples of Dynamic Programming Algorithms. Explain any one. Q.5 Attempt the following: (Any THREE) (15M)A What is Analysis of Algorithm? Why is it important? Explain. B List the various properties of binary tree. C What is a threaded binary tree? Explain.

Page 2 of 2 EEAE2349ABCB479ED71D22BA32300602

Y

D Write a note on Partition-based Selection Algorithm.

E What is a Topological Sort? Explain it with a suitable example.