F.Y.B. Sc. Comp. Sci. Sein I Nov. 17 Discrete Mathematics

Q. P. Code: 12212

		(Time: 2½ Hours)	[Total Marks: 7:
N.B.	l) All d	luestions are compulsory.	
		res to the right indicate marks.	
3) 3) Illus	trations, in-depth answers and diagrams will be apprecia	
4	l) Mixi	ng of sub-questions is not allowed.	tea.
Q. 1 Ar	ıswer :	the following questions	/4 # B # S
(a)		oose the best choice for the following questions:	(15M)
` ,	(i)	A function f from P to P which patients of a grant	(5M)
	(-)	A function f from R to R which satisfies $f(a) = f(b)$ im and b in R is said to be	plies a=b for every a
		(a) One-to-one function (b) onto functi	ion C
		(c) Either one-to-one or onto function (d) None of the	
	(ii)	A relation R on a set X is such that whenever $(x, y) \in$	R. (v. x) F.R. then R
		is called	-4 (), A) C A, then A
		(a) Reflexive (b) Symmetric	
		(c) Transitive (d) None of the	
	(iii)	What is the coefficient of x^2y^2 in the expansion of $(x + y^2)$	ω1 ⁴ -
		(a) 4 (b) 6 (c) 8	(d) No Cut
	(iv)	Suppose a bookcase shelf has 5 Physics texts 3 Chemi	stru tavta 6 Dialana
		tokes, and 4 mathematics texts. Number of wave a stu	dent can choose one
		text of each type is given by	
	(v)	(a) 660 (b) 560 (c) 460 (d) N	None of these
		An undirected graph with no multiple edges or loops is c	alled
	l	(a) Simple graph (b) Complex graph (c) Tree (d) F	Pseudo graph.
(b)			
(0)	- 7111 1 - 733	n the blanks for the following questions:	(5M)
• •	(i)	A function f such that $f(x) = x$ for any x in the domain	of f is said to be a

(ii) A relation R on a set A is called ______ if whenever (a, b) ∈ R, then $(b, a) \in R$, for all $a, b \in A$. (iii) The Gödel number of a word $w = a_5 a_2 a_3 a_1 a_2$ is $2^5 3^2 - 5^3 7 11^2$ (iv) The number of different license plates that can be made if each plate contains a sequence of three uppercase English letters followed by three digits is given by ____ (v) Let G be a directed graph and v be a vertex of G. The number of edges ending at v is called Successor

function.

Answer the following questions:

(5M)

- If the domain of the function f(x) = x+1 is R, what will be its co-domain? (i)
- Let S be a set. Determine whether there is a greatest element and a least (ii) element in the poset $(P(S), \subseteq)$.
- How many ways are there to select a first-prize winner, a second-prize winner, and a third-prize winner from 100 different people who have entered a contest?
- (iv) Define a regular grammar.
- What is the degree of a vertex of n undirected graph? (v)

Q. 2 Answer any three of the following:

(15M)

- Determine whether the function f: R-> R given by f(x) = -3x + 4 is a bijection.
- (b) Find the domain and range of following functions:
 - (i) The function that assigns to each positive integer the number of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 that do not appear as decimal digits of the integer.
 - (ii) The function that assigns to a bit string the numerical positionofthefirst linthestringandthatassigns the value 0 to a bit string consisting of all 0s
- Draw the Hasse diagram representing the partial ordering {(a,b) / a divides b} on
- (d) Which of these relations on {0, 1, 2, 3} are partial orderings?.
 - (i) $\{(0,0),(2,2),(3,3)\}$
 - $\{(0,0),(1,1),(2,0),(2,2),(2,3),(3,3)\}$
- Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0.
- Find the solution of the recurrence relation $a_n = a_{n-1} + 2a_n 2$ with $a_0 = 2$ and $a_1 = 7$. **(f)**

Q. 3 Answer any three of the following:

(15M)

- (a) How many permutations of the letters ABCDEFG contain:
 - (i) The string BCD?
 - (ii) The string CFGA?
 - (iii) The strings BA and GF?
 - (iv) The strings ABC and DE?
 - (v) The strings ABC and CDE?
- State and prove Pascal identity.
- State Pigeonhole principle. A chess player has 77 days to prepare for an important tournament. He decides to practice by playing at least one game per day and a total of 132 games. Show that there is a succession of days during which he must have
- Suppose that there are nine students in a discrete mathematics class at a small
 - (i) Show that the class must have at least five male students or at least five female
 - (ii) Show that the class must have at least three male students or at least seven

- - (e) Construct a derivation tree for the following derivation: the hungry rabbit eats quickly.
 - (f) Find the output string generated by the finite-state machine given below if the input string is 101011.

Q. 4 Answer any three of the following:

(15M)

(a) Find the degree and neighborhood of each of the vertex of the graph given below:

- (b) Suppose a graph G contains two distinct paths from a vertex u to a vertex v. Show that G has a cycle.
- (c) Draw the graph corresponding to the following adjacency matrix:

CO.				-	-	-
	T	0	0	0	0	ļ
0	0	1	1		1	l
0	0	0	0	1	1	ŀ
1	0	1	0	0	0	
0	1	0	1	1	0_	
	1 0 0 1 0	1 1 0 0 0 0 1 0 0 1	1 1 0 0 0 1 0 0 0 1 0 1 0 1 0	0 0 1 1	1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1	1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0

- (d) Represent the following expressions using binary tree:
 - (i) (x + xy) + (x/y); (ii) x + ((xy + x)/y).
- (e) Draw all possible non similar binary trees T with four external nodes.
- (f) Determine the order in which a preorder traversal visits the vertices of the following ordered rooted tree:

Page 3 of 4

Q. 5 Answer any three of the following:

(15M)

- (a) Let R be the relation on the set of all people who have visited a particular Web page such that xRy if and only if person x and person y have followed the same set of links starting at a particular Web page. Show that R is an equivalence relation.
- (b) Find the solution of the recurrence relation $a_n = 6a_{n-1} 9a_n 2$ with initial conditions $a_0 = 1$ and $a_1 = 6$.
- (c) What is the coefficient of $a^{13}b^{123}$ in the expansion $(a+b)^{25}$ using binomial theorem.
- (d) Define a language L over an alphabet A. Let $A = \{a, b, c\}$. Find L* where language L= $\{b2\}$.
- (e) Find the in-degree and out-degree of each vertex in the graph shown:

Consider the graph G in the following figure (where the vertices are ordered alphabetically). (i) Find the adjacency structure of G. (ii) Find the order in which the vertices of G are processed using a Breadth-first search algorithm beginning at vertex A.

