I ’ - VS CS 105D Q.P. Code : 781301

{22 Hours) [Total Marks: 75}

N.B. (1} All questions are compulsory.
(2} Figures to the right indicate marks.

1. Answer the following questions {IsM)}
(a) Choose the hest choice for the following questions: (5 M)
(@ If fi and & are two functions from R to R such that fi(x) = x* and
f(x) =x — %%, then {f;+5)(x) is given by
{a) x (b) 2 (¢)- x {d) None of these
(i) Let {an} be a sequence that satisfies the recurrence relation ay = a8, + 3 for
n=1,32,3,...,and suppose that a; = 2, What are a; and 2,7
Q (a) 5 and 8 regpectively (b) 8 and 5 respectively
(c) 3 and 5 respectively (d) None of these

(iii) A class contains 10 students with 6 men and 4 women. Number of ways to

| elect a president, vice president, and treasurer is:
(a) 132 (b)122 (c) 120 {d} 12

{(iv} There are {our bus lines between 4 and B, and thres bus lines between B and
C. Number of ways that 2 man can travel by bus itom A to Cby way of B is

(a) 10 (b) 11 {c)i2 {d) 13
(v} Anundirected graph with no muitiple edges or loops is called
(2) tree (b) complex graph (¢ simple graph  {d) pseude graph.
{b) Till in the blanks for the following questions: {5SM)
() A function fsuch that f{x) = x for any x in the domain of fis said to be a
_ function.
P {(ii} A relation R on aset A is called if whenever (a, b) € R and
() (b,cyeR,then(a,c)& R, foralla, b,ce A,

(iif)  The Gadel number of a word w = asqyasaym is

(iv) I a first task can be done in m ways and a second task in n, ways, and if
these tasks cannaot be done at the same time then there are ways

to do either task.
(v} Let G bt a directed graph and v be a vertex of G. The number of edges
ending al v is called
(¢} Ansver the following questions: {(5M)

( Whyisf defined by f(x)= H(1-x), not a function from R to R?
(iiy Find the Fibonacci numbers f; and f;.

(iii) State the essential differcnce between permutations and cembinations, with
examples.
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{iv) State Product rule in counting of objects,

(v) What daes il mean for a string to be derivable from a string w by phase
structure grammar G7 -

2. Answer any three of the following: (15 M)

(a) LetS={-1,0,2,4 7} Find £(S)if () f(x)=1, (D f)=2x+ 1L

(b) Define one-to-one function. Determine whether each of the following finctions
from {a, b, ¢, d} to itself is ang-to-one.
)f{a)=b,f{b}=a,f(c)=c, f(d)=d
i) fay=b,f(b)=b,I{c)=d,f(d)=¢

(c) Let R be the relation on the set of real numbers such that eRb if and onlyifa—-bis
an integer. Is R an equivalence relation? Justify your answer.

{d) Define a poset. Is (S,R) a poset i S is the set of all people in the world and (s, b) €
R, where a and b are people, if
1} 8 is no sherler than b?
i1} 2 weighs more than b?

{e) Solve the recurrence relation a, = day.) ~ dag-; forn2 2, 80 =6, a; = 8.

{f) Describe Tower of Hanoi puzzle. Formulate a reenrrence relation for it.

*

3. Answer any three of the following: (15 M)

{a) How many ways in which 5 men and 5 women stand in a row so that ng two men
and no two women are adjacent to each othet?

(b) State and prove Pascal identity.

{(¢) State Pigeorhole principle. A chess player has 77 days to prepare for & serious
tournament, He decides fo practice by playing at least one game per day and a total
of 132 games, Show that there is a succession of days during which he must have
played exactly 21 games.

{d) How many integers between 1 and 600 (both inclusive) are not divisible by 3, 5 or
4

(¢) Defing alanguage I, ever an alphabet A. Let A= {a, b, ¢}. Find L” where language
L= {a,be’}

{f}  Let A= {aq, b}. Construct an automaton A/ which will accept precisely those words
from A which ends in two 57s.

4. Answer any rhree of the following: {15M)

{a) Consider the graph G in the following figure. Find: (i) all eycles which include
vertex 4, (ii) all cycles in G,

-]
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(b} Consider the graph G in the following fipure (where the vertices are ordered
alphabetically). (i} Find the adjacency structure of G. (ii) Find the order in which
the vertices of G are processed using a Breadth-first search algorithm beginning at
vertex A.

{¢} Suppose a praph G contains two distinet paths from a vertex « io a vertex v. Show
that & has a cycle.
(d) Draw the graph G corresponding to each adjacency matrix;

—

1112
1L 000 .
1L.002
2022

(e} Consider the birary tree T in the following fgure,
(i) Traverse T uaing the inorder algorithm.
(ii) Traverse T using the postorder algorithm,

ﬂ// F\E}
\:r: u/ \G
C/ B/ \!i

(f) Let T be the binary search tree in the following figure. Suppose nodes 22, 25, 75
are deleted one after the other from 7. Find the final tree 7.
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8. Answer any three of the following:

(3}
{b)

()
(d)
(¢}

O
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15 il 44 a0

B

(35 M)
Draw the Hasse diagram {or divisibility on the set {1, 2, 4, 8, 16, 32, 64},

How many solutions does the equation x+y+z=11 have, where X, y aud z are non-
negative integers with x 23, y2l and z2 07
Find a1l solutions of tha recurrence telation @, = 2a,-;+ 3%,

What is the coefficient of x'>y" in the expansion (x+y)** using binomial theorem.
Praw all possible non similar binary trees T with three nodes.




