Paper / Subject Code: 89023 / Finite Element Analysis

T.E. / Mech / Sem / CBCS / FEA

(3 Hours) Max. Marks: 80

Note:

- 1. Question 1 is Compulsory
- 2. Solve any three from remaining five
- 3. Figures to right indicate full marks
- 4. Assume suitable data if necessary

1 0 DFC 2010

Q.1 Attempt any four

5

10

10

- a) Write element matrix equation in the following fields explaining each term:
 - i. 1D steady state, heat transfer by conduction
 - ii. Torsion Analysis
- b) Prove that linear triangular element is CST element.
- c) Explain different types of Boundary conditions with examples.
- d) Explain plane stress and plane strain conditions with examples.
- e) What do you mean by consistent mass matrix and lumped mass matrix. Give suitable mathematical expression?
- Q.2 a) Solve the following differential equation using Method of least square and Galerkin method.

$$\frac{d^2y}{dx^2} - 10x^2 = 5; \ 0 \le y \le 1; \ y(0) = 0, \ y(1) = 0$$

Compare answer with exact solution at x = 0.5

b) Find the displacement at nodes and stresses over each element.

f	P=20KN	Rigid Plate
S	A S	

STEEL (S)	ALUMINIUM (A)	BRASS (B)
200	370	370
2x 10 ⁵	7x 10 ⁴	8.8x 10 ⁴
1000	350	300
	200 2x 10 ⁵	200 370 2x 10 ⁵ 7x 10 ⁴

Q.3 a) A copper fin of diameter 2 cm, length 6 cm and thermal conductivity is 100 W/m 0 C and is exposed to ambient air at 30 0 C with a heat transfer coefficient 25 W/m 2 0 C. If one end of the fin is maintained at temperature 500 0 C and other end is at 200 0 C. Solve the following differential equation for obtaining the temperature distribution over the length of a fin.

$$kA.\frac{d^2\theta}{dx^2} - hp\theta = 0$$

 θ = Temperature difference=Tx -Ta.

Use Rayleigh-Ritz method, mapped over general element, taking Lagrange's linear shape functions and three linear elements. Write all the steps clearly. Compare your answer with exact at x= 2,4 cm

b) For the iso parametric quadrilateral element shown in figure. Determine Cartesian coordinates of point P which has local coordinates $(\xi, \eta) = (0.57735, 0.57735)$.

Q.4 a) Compute the stress developed in the members of the truss shown in figure. E=200 GPa. Area of the each member is 200 mm².

10

b) The nodal coordinate of the triangular element are as shown in figure. Take the nodal displacement vector Q^T=[2.0,1.0,3.0,2.0,5.0,3.0] in mm. Obtained the displacement at the interior point P whose x and y coordinate is (1.5).

Paper / Subject Code: 89023 / Finite Element Analysis

Q.5 a) Evaluate the natural frequencies for the bar with varying cross sections shown in figure. L = 200 mm, E = 200 GPa and $\rho = 8000$ kg/m³. Consider two elements of equal lengths.

10

12

b) Quadrilateral element is shown in figure. The temperatures at the nodes are T_1 =100°C, T_2 =60°C, T_3 =50°C and T_4 =90°C respectively. Determine the temperature at a point P (2.5, 2.5)

Q.6 a) A CST element is shown in figure. The modulus of elasticity and Poisson's ratio for plate material are 70 x 10³ N/mm² and 0.3 respectively. Upon loading of the plate, the nodal deflections were found to be in x and y direction respectively as

 u_1 = 0.01mm and v_1 = -0.04mm, u_2 = 0.03mm and v_2 = 0.02mm, u_3 = -0.02mm and v_3 = -0.04mm.

Determine:

- i. The Jacobian for (x,y)- (ξ,η) transformation
- ii. The strain-displacement relation matrix
- iii. The stress in plate

08

b) Explain Convergence criteria. What do you understand by h & p method of Finite Element Analysis?