## **Digital Logic Design and Analysis**

## December 17

Computer Engineering (Semester 3)

## Total marks: 80 Total time: 3 Hours

## INSTRUCTIONS

(1) Question 1 is compulsory.

- (2) Attempt any **three** from the remaining questions.
- (3) Draw neat diagrams wherever necessary.

| <ul><li>Q.1(a) Find the maximum flow for the following network using Ford Fulkerson algorithm:</li><li>(b) Show TSP is NP Complete and design an approximation algorithm for TSP.</li></ul>                                                                                                                                                                                                                                                                                                                                                                             | (10)<br>( <b>10</b> ) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Q.2 (a)What is convex hull? Explain the Graham's scan algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (10)                  |
| <ul> <li>(b)In January, you buy a Ferrari from Lucky Motors, a dealer who offers you following maintenance contract: Rs.50000 each month other than March, June September and December (this covers an oil change and general inspection), Rs.1,00,000 every March, June, and September (this covers an oil change, a mi tune-up, and a general inspection), and Rs.2,00,000 every December (this covers an oil change, a major tune-up, and a general inspection).</li> <li>Obtain an upper bound on the cost of this maintenance contract as a function of</li> </ul> | (10)<br>e,<br>nor     |
| the number of months, using amortized accounting method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (10)                  |
| Use recursive tree method to find time complexity of the following recursive Equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (10)                  |
| $T(n) = 3 T (n/4) + cn^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
| <ul><li>(b) Create a Red Black Tree for the following elements:</li><li>4, 2, 8, 10, 18, 6, 12, 14</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (10)                  |
| Q.4 (a) What is binomial heap? Draw a binomial heap for the following elements:<br>iv .0 3, 1, 2, 9, 0, 6, 4, 8, 5, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (10)                  |
| After creating binomial heap, delete a node with minimum key and show resultant hea<br>(b) <b>Explain</b> Tra Velling Salesman Problem in details.<br><sup>4</sup> k!                                                                                                                                                                                                                                                                                                                                                                                                   | p.                    |
| Q.5(a) Explain with example Maximum Bipartite matching.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10)                   |
| (b)Explain closest pair of points using divide and conquer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (10)                  |
| <ul><li>Q.6(a)What is the hiring problem? Discuss randomized algorithm for the same.</li><li>(b)Discuss in details line segment properties.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                   | (10)<br>(10)          |



