

Data Structures

DEC 18

Computer Engineering (Semester 3)

Total marks: 80 Total time: 3 Hours

INSTRUCTIONS

(1) Question 1 is compulsory.

(2) Attempt any **three** from the remaining questions.

(3) Draw neat diagrams wherever necessary.

1.a. What are various operations possible on data structures.	(5 marks)
1.b. What are different ways of representing a Graph data structure	
on a computer.	(5 marks)
1.c. Describe Tries with an example.	(5 marks)
1.d. Write a function in C to implement binary search.	(5 marks)

2.a. Use stack data structure to check well-formedness of parenthesis in an algebraic expression. Write C program for the same. (10 marks)
2.b Given the frequency for the following symbols, compute the Huffman code for each symbol.

Symbol	Α	В	С	D	E
Frequency	24	12	10	8	8

(10 marks)

3.a. Write a C program to implement priority queue using arrays. The program should perform the following operations: i)Inserting in a priority queue.

ii)Deletion from a queue.

iii) Displaying contents of the queue.

(12 marks)

 3.b. What are expression trees? What are its advantages? Derive the expression tree for the following algebraic expression : (a + (b/c))*((d/e)-f) 	(8 marks)
4.a. Write a C program to represent and add two polynomials using linked list.4.b. How does the Quicksort technique work? Give C function for the same.	(12 marks) (8 marks)
 5.a. What is doubly linked list? Give C representation for the same. 5.b. Given the postorder and inorder traversal of a binary tree, construct the original tree: POSTORDER : D E F B G L J K H C A 	(5 marks)
INORDER : D B F E A G C L J H K	(10 marks)
5.c. What is hashing? What properties should a good hash function demonstrate?	(5 marks)
 6.a. Given an array int a [] = {69,78,63,98,67,75,66,90,81}. Calculate address of a [5] if base address is 1600. 6.b. Give C function for Breadth First search Traversal of a graph. Explain the code with an example. 6.c. Write a C program to implement a singly linked list. The program should be able to perform the following operations. i) Insert a node at the end of the list. 	(02 marks) (12 marks)
ii) Deleting a particular element.	
iii) Display the linked list	(08 marks)