

BEE

MAY 18

First year (Semester 1)

Total marks: 80 Total time: 3 Hours

INSTRUCTIONS

(1) Question 1 is compulsory.
(2) Attempt any three from the remaining questions.
(3) Draw neat diagrams wherever necessary.

Attempt Any 5

Q1] a) What is the difference ideal source and actual source? Illustrate the concept using the V-I	
characteristics of voltage and current source.	(4)

Q1] b) In a balanced three phase circuit the power factor is 0.866. what will be the ratio of two wattmeter reading if the power is measured using two wattmeter (4)

Q1] c) Calculate $oldsymbol{R}_{
m AB}$

(4)

Q1] d) Derive the equation for resonance frequency for a parallel circuit in which a capacitor is connected in parallel with a coil having resistance R and inductive reactance *XL*. What is the resonance frequency if inductor is ideal? (4)

Q1] e) What are the classification of DC motor? Specify one application for each one.	(4)
Q1] f) Derive emf equation of a single phase transformer	(4)

121

32

6A

T

22

au

Q2] a) Using mesh analysis find current through 5Ω

125

36

Q2] b) An emf of 250V is applied to an impedance $Z_1 = (12.5 + j20)\Omega$. An impedance Z_2 is added in series with Z_1 , the current become half of the origin and lead the supply voltage by 20°. Determine Z_2

(8)

(4)

(8)

Q2] c) Determine the potential difference *VAB* for the given network

50

652

Q3] a) When a voltage of 100V, 50Hz is applied to an impedance A current taken is 8A lagging and power is 120W. When it is connected to an impedance B the current is 10A leading and power is 500W. what current and power will be taken if it is applied to the two impedances connected in series. (8)

Q3] b) Find current through 10Ω using Thevenin's theorem

(8)

Q3] c) With the help of equivalent circuit of a single phase transformer show how total copper loss can be represented in primary of a transformer. (4)

Q4] a) Find *VL* using super position theorem

Q4] b) In an R-L-C parallel circuit the current through resistor, inductor(pure) and capacitor are 20A, 15A and 40A respectively. What is the current taken from the supply? Draw phasor diagram. (4)

Q4] c) Two sinusoidal source of emf have rms value **E1** and **E2**. When connected in series, with a phase displacement α the resultant voltage read on an electrodynamometer voltmeter 41.1V and with one source reserved 17.52V. When the phase displacement made zero a reading of 42.5V is observed. Calculate **E1**, **E2** and α (8)

Q5] a) Prove that the power in a balanced three phase delta connected circuit can be deduced from the reading of two wattmeter. Draw relevant connections and vector diagrams. Draw a table to show the effect of power on wattmeter. (8)

Q5] b) A 5kVA 200/400, 50Hz single phase transformer gave the following test results.

OC test on LV side	200V	0.7A	60W
SC test on LV side	22V	16A	120W

1. Draw the equivalent circuit of the transformer and insert all parameter values.

2. Efficiency at 0.9 pf lead and rated load.

3. Current at which efficiency is maximum.

Q5] c) Prove that if the phase impedance are same, power drawn by a balanced delta connected load is three times the power drawn by the balanced star connected load. (4)

(8)

Q6] a) Three identical coils each having a reactance of 20Ω and resistance of 10Ω are connected in star across a 440V three phase line. Calculate for each method:

- 1. Line current and phase current.
- 2. Active , reactive and apparent power.
- 3. Reading of each wattmeter connected to measure the power. (8)

Q6] b) A series resonant circuit has an impedance of 500Ω at resonance frequency. The cut of frequency observed are 10kHz and 100Hz, Determine:

- 1. Resonant frequency
- 2. Value of R,L and C.

. Q factor at resonance	(6)
-------------------------	-----

Q6] c) Draw and illustrate transformer phasor diagram for lagging power factor. (6)