

Applied Physics 2 - Dec 17

First Year Engineering (Semester 2)

Total marks: 80 Total time: 3 Hours

INSTRUCTIONS

(1) Question 1 is compulsory.

(2) Attempt any three from the remaining questions.

(3) Draw neat diagrams wherever necessary.

1.a. Why Newtons Rings are circular and centre of interference pattern is dark?	(5 marks)	
1.b. What is Rayleigh's criteria resolution? How to increase resolving power diffraction grating	g?	
	(5 marks)	
1.c. Calculate the V number of an optical fibre having numerical aperture 0.25 and core diame	ter 20 m,	
if its operating wavelength is 1.55 μm.	(5 marks)	
1.d. What is pumping in Laser? Give the types of pumping.	.(5 marks)	
1.e. Show that the divergence of the curl of a vector is zero.	(5 marks)	
1.f. Determine the magnetic field required to bend a beam consisting of electron of speed 3×10^{7} m/s in		
a circle of radius 5 cm.	(5 marks)	
1.g. What will be the fringe pattern if wedge shaped air film is illuminated with white light?	(5 marks)	
2.a. Obtain the condition for maxima and minima of light reflected from the transparent film of	of uniform	
thickness. Why is the visibility of the fringe much higher in the reflected system than in transm	nitted	
system	(5 marks)	
2.b. What is the numerical aperture? Explain the use of optical fibre in temperature sensor. The	e core	
diameter of a multimode step index fibre is 50 µm. The numerical aperture is 0.25. calculate the	ie number	
of guided modes at an operating wavelength of 0.75 μ m.	(5 marks)	
3.a. Explain the experimental method to determine the wavelength of spectral line using diffra	ction	
grating. What is the highest order spectrum which can be seen with monochromatic light of wa	avelength	
6000 A° by means of a diffraction grating with 5000 lines/cm?	(10 marks)	
3.b Explain construction and working of Nd:YAG laser.	(10 marks)	
4(a) Explain Spherical co-ordinate system. State the transformation relation between Cartesian	1 and	
Spherical co-ordinates.	(5 marks)	
4(b) Explain construction and working of cathode ray tube.	(5 marks)	
4(c) A wedge shaped film having angle of 40 seconds is illuminated by monochromatic light.	Fringes	
are observed vertically through a microscope. The distance between 10 consecutive dark fringe	es is 1.2	
cm. find the wavelength of monochromatic light is used.	(5 marks)	

5(a) Explain the construction and working of of Atomic Force Microscope. Compare AFM with	h
scanning electron microscope	(5 marks)
5(b) Derive Maxwells two general equations in integral and differential form.	(5 marks)
5(c) An electron is accelerated through a potential difference of 5 kV and enters a uniform mag	netic
field of 0.02 Wb/m ² acting normal to the direction of electron motion. Determine the radius of t	he path.
	(5 marks)

6(a) What are the different methods of synthesis of nano materials? Explain one of them in detail.

	(5 marks)
6(b) . What is holography? Differentiate between holography and photography.	(5 marks)
6(c) Describe in detail the concept of anti reflecting film with a proper ray diagram.	(5 marks)

