

Applied Maths -I May 18

First Year (Semester 1)

Total marks: 80 Total time: 3 Hours

INSTRUCTIONS

(1) Question 1 is compulsory.

(2) Attempt any **three** from the remaining questions.

(3) Draw neat diagrams wherever necessary.

1(a) If $\tan \frac{x}{2} = \tanh \frac{u}{2}$, show that $u = \log[\tan(\frac{\pi}{4} + \frac{x}{2})]$ (3 marks)1(b) Prove that the following matrix is orthogonal & hence find A⁻¹(3 marks) $A = \frac{1}{3} \cdot 2 \cdot 2 \cdot 1$ (3 marks)1(c) State eulers theorem on homogeneous function of two variables & if $u = \frac{x+y}{x^2+y^2}$ then(3 marks)evaluate $x \frac{\delta u}{\delta x} + y \frac{\delta u}{\delta y}$.(3 marks)1(d) If $u = r^2 \cos 2\theta$, $v = r^2 \sin 2\theta$. Find $\frac{\delta(u,v)}{\delta(r,\theta)}$ (3 marks)1(e) Find the nth derivative of $\cos 5x.\cos 3x$ (4 marks)1(f) Evaluate: $\lim_{x \to 0} \left(\frac{2x+1}{x+1}\right)^{\frac{1}{x}}$ (4 marks)

2(a) Solve $x^4 - x^3 + x^2 - x + 1 = 0$ (6 marks)**2(b)** If $y = e^{\tan^{-1} x}$. Prove that $(1+x^2)y_{n+2} + [2(n+1)x-1]y_{n+1} + n(n+1)y_n = 0.$ (6 marks)**2(c)** Examine the function f(x,y) = xy(3-x-y) for extremes values & also find maximum and minimum values of f(x,y)(8 marks)

3(a) Investigate for what values of λ and μ the equations x+y+z = 6; x+2y+3z = 10; x+2y+ λ z = μ have

- no solution
- a unique solution
- infinite number of solution (6 marks) **3(b)** If $u=f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, show that $x^2\frac{\delta u}{\delta y} + y^2\frac{\delta u}{\delta y} + z^2\frac{\delta u}{\delta y} = 0$ (6 marks)

3(c) prove that
$$\log\left(\frac{a+ib}{a-ib}\right) = 2i \tan^{-1} \frac{b}{a} \& \cos\left[i \log\left(\frac{a+ib}{a-ib}\right)\right] = \frac{a^2 - b^2}{a^2 + b^2}$$
 (8 marks)

www.lastmomenttuitions.com

4(a) If
$$u=\sin^{-1}(\frac{x+y}{\sqrt{x}+\sqrt{y}})$$
, prove that $x^2u_{xx}+2xyu_{xy}+y^2u_{yy}=\frac{-\sin u\cos 2u}{4\cos^2 u}$ (6 marks)**4(b)** using encoding matrix $\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}$; encode & decode the message "ALL IS WELL"(6 marks)**4(c)** Solve the following equations by Gauss Seidal method:10x₁+x₂+x₃=12 $2x_1+10x_2+x_3=13$ (8 marks)**5(a)** If $u=exyzf(\frac{xy}{z})$ where, $f(\frac{xy}{z})$ is an arbitrary function of $\frac{xy}{z}$, prove that:
 $x\frac{\delta u}{\delta x} + z\frac{\delta u}{\delta z} = y\frac{\delta y}{\delta x} + z\frac{\delta u}{\delta z} = 2xyz. u$ (6 marks)**5(b)** prove that $\sin^5\theta = \frac{1}{16}(\sin 5\theta - 5\sin 3\theta + 10\sin \theta)$ (6 marks)**5(c)**1)Prove that $\log(\sec 2) = \frac{1}{2}x^2 + \frac{1}{12}x^4 + \dots$
 $2)Expand $(2x^3 + 7x^2 + x - 1)$ in powers of $(x-2)$ (8 marks)**6(a)** Prove that $\sin^{-1}(\csc \theta) = \frac{\pi}{2} + i\log(\cot \frac{\theta}{2})$ (6 marks)**6(b)** Find the non - singular matrices P&Q such that $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \\ Also, find its rank.(6 marks)6(c) Obtain the root of $x^3 - x - 1 = 0$ by Regula Falsi Method (Take three iterations)(8 marks)$$