

Applied Mathematics 2 - Dec 18

First Year Engineering (Semester 2)

Total marks: 80 Total time: 3 Hours

INSTRUCTIONS

(1) Question 1 is compulsory.

- (2) Attempt any three from the remaining questions.
- (3) Draw neat diagrams wherever necessary.

1.a. Evaluate
$$\int_0^\infty \frac{e^{-x^3}}{\sqrt{x}}$$
 (3 marks)

1.b. Find the length of the curve
$$x = \frac{y^3}{3} + \frac{1}{4y}$$
 from $y = 1$ to $y = 2$ (3 marks)

1.c. Solve
$$(D^2+D)y=e^{4x}$$
 (3 marks)

1.d. Evaluate
$$\int_0^1 \int_{x^2}^x xy(x+y) \, dy \, dx$$
(3 marks)

1.e. Solve
$$(4x + 3y - 4) dx + (3x - 7y - 3) dy = 0$$
 (4 marks)

1.f. Solve $\frac{dy}{dx} = 1 + xy$ with initial condition.

 $x_0=0, y_0=0.2$ by Taylor's series method. Find the approximate value of y for x = 0.4 (step size 0.4) (4 marks)

2.a. Solve
$$\frac{dy}{dx} - 16y = x^2 e^{3x} + e^{2x} - \cos 3x + 2^x$$
 (6 marks)

2.b. Show that
$$\int_0^{\pi} \frac{\log(1+a\cos x)}{\cos x} \pi \sin^{-1} a \ 0 \le a \le 1$$
 (6 marks)

2.c. Change the order of integration and evaluate $\int_{0}^{2} \int_{2-\sqrt{4-y^{2}}}^{2+\sqrt{4-y^{2}}} dx \, dy$ (8 marks)

3.a. Evaluate $\iiint (x+y+z)dx dy dz$ over the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1

(6 marks)

3.b. Find the mass of the lamina bounded by the curves $y=x^2-3x$ and y = 2x if the density of the lamina at any point is given by $\frac{24}{25}xy$ (6 marks)

3.c. Solve
$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + 3y = \frac{\log x . \cos(\log x)}{x}$$
 (8 marks)

www.lastmomenttuitions.com

LAST MOMENT TUITIONS

4.a. Find by double integration the area bounded by the parabola $y^2=4x$ and the line y = 2x - 4 (6 marks) **4.b.** Solve $\frac{dy}{dx}$ +xsin2y=x³cos²y (6 marks)

4.c. Solve $\frac{dy}{dx} = x^3 + y$ with initial conditions y(0) = 2 at x = 0.2 in steps of h = 0.1 by Runge Kutta method of fourth order. (8 marks)

5.a. Evaluate
$$\int_0^1 x^5 \sin^{-1} x \, dx$$
 and find the value of $\beta(\frac{9}{2}, \frac{1}{2})$ (6 marks)

5.b. In a circuit containing inductance L, resistance R, and voltage E, the current I is given by $L\frac{di}{dt}$ +Ri=E find the current i at time t if at t = 0, i = 0 and L,R,E are constants. (6 marks)

5.c. Evaluate $\int_{0}^{6} \frac{dx}{1+3x}$ by using i) Trapezoidal ii) Simpson's $(1/3)^{rd}$ and iii) Simpsons $(3/8)^{th}$ rule (8 marks) 6.a. Find the volume bounded by the paraboloid. $x^{2}+y^{2}=az$ and the cylinder $x^{2}+y^{2}=a^{2}$ (6 marks) 6.b. Change to polar co-ordinates and evaluate. $\int_{0}^{1} \int_{0}^{x} (x + y) dy dx$ (6 marks)

6.c. Solve by method of variation of parameters.

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$$
(8 marks)

<u>www.lastmomenttuitions.com</u>